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Preface

This book is a sign of its times. Each one of the chapters — papers written
by European authors of various backgrounds — illustrates a departure from the
style of theorizing that has been prominent in the social sciences for most of
the century. Until very recently, models for behavioral phenomena were chiefly
based on numerical representations of the objects of concern, e.g. the subjects
and the stimuli under study. This was due in large part to the influence of
nineteenth century physics, which played the role of the successful older sister,
the one that had to be imitated if one wished to be taken seriously in scientific
circles. The mystical belief that there could be science only when the objects
of concern were susceptible of measurement in the sense of physics was a credo
that could not be violated without risks. Another, more honorable justification
was that the numerical models were the only ones capable of feasible calcula-
tions. (In fact, these models were typically linear.) An early example of such
theorizing in psychology is factor analysis, which attempted to represent the
results of mental tests in a real vector space of small dimensionality, each sub-
ject being represented by a point in that space. A dimension was interpreted
as a scale measuring some mental ability. The analysis was simple, and only
required an electrical desk calculator (with spinning wheels), and a suitable
amount of determination. Psychometric models and practices, which are cur-
rently the object of much criticisms, are in the same vein.

The advent of the computer marked the end of this era. To be sure, the ef-
fect was not immediate, and computers were first used for particularly long
or difficult (e.g. nonlinear) numerical calculations. In the behavioral sciences,
factor analysis was replaced by non metric multidimensional scaling as a choice
representation technique. The numerical measurement credo was not so easily
repudiated.

Nowadays, however, large scale computer searches in combinatoric structures,
for example in order to find the best exemplar for some piece of data in a vast,
but finite class of models, are becoming more frequent, and the style of mod-
eling is changing accordingly. A representative model maybe a hypergraph or
an order relation of some kind, sometimes equipped with a probabilistic struc-
ture. Measurement in the traditional sense of physics plays a decreasing role.
The seven chapters of the book offer good examples of this trend. Note that
all chapters contain exercises, which is a token of the authors’ confidence that
their work is not a manifestation of a passing fashion.



The first three chapters deal with various issues in knowledge space theory. The
central concept, the ‘knowledge space’, is a hypergraph, the edges of which rep-
resent possible states of knowledge of subjects in a population, with respect
to a specific field of information. An important problem is that of finding
the knowledge state that best represents a subject. In his chapter, Jean-Paul
Doignon reviews a number of Markovian-type assessment procedures for that
purpose. The standard implementation is on a computer. The subject is asked
questions, successively chosen so as to narrow down as quickly as possible the
set of knowledge states consistent with the responses given. Probabilities are
introduced to render the search procedure less vulnerable to errors of various

kinds.

The most critical aspect of knowledge space research certainly concerns the
practical construction of the family of feasible knowledge states in some em-
pirical situation. One obvious method consists in interviewing a number of
experts in the field (for example, some experienced teachers in the field). Un-
fortunately, even though these experts may have some implicit awareness of
the knowledge states which may be present in a population of subjects under
consideration, the list of of such states cannot be obtained by straightforward
questioning. The list is too long, for one thing. For another, it is far from
clear that an expert’s representation of the knowledge states is in the form
required by the theory. For instance, it is doubtful that Johnny’s mathematics
teacher has a representation of Johnny’s knowledge state as the set of all 126
mathematics questions (say, within the standard mathematics curriculum) that
Johnny is capable of solving. The relevant information can be elicited from
the experts, but indirect methods must be used. Cornelia Dowling’s chapter
is devoted to this issue. She reviews some basic results concerning an impor-
tant mathematical relation equivalent to a knowledge space. She then shows
how this relation can be used to set up a practical method for interviewing
experts. In Chapter 3, Dietrich Albert and Theo Held take a different tack,
and propose to construct the knowledge space by a systematical analysis of
the content of the problems in terms of basic components. They discuss in
details two applications of their ideas: chess problems and the continuation
of a sequence of numbers. They also consider the relationship between their
knowledge representation scheme and decision theory.

Next in order comes a chapter by Jiirgen Heller on lattice representations of
semantic features. After reviewing some standard material on lattices and the
‘concept lattices’ of Wille and Ganter, he formulates a representation theorem
for the data structure generated by a particular experimental paradigm, which
he also describes. An exemplary empirical application is given.

In their chapter, Erdmute Sommerfeld and Fred Sobik use graph theory to rep-
resent cognitive structures and their transformations. Each vertex and each
edge of a representing graph is assigned a label signaling some elementary prop-
erty, and carrying a cognitive interpretation of the graph. The chapter contains



v

many examples of applications of these concepts to empirical situations.

Chapter 6, due to Cees Witteveen, explores an intriguing idea. Representing
the behavior of an organism as the output of a production system, he asks:
“How can we infer its set of rules and control structure?” In general, this
problem does not have a unique solution. Moreover, as argued by the author,
it is not clear that a solution can be found in finite time. In any event, the
chapter focuses on a somewhat simpler problem, namely: given the set of rules
(or procedural knowledge), what control structure can generate the behavior?
The lack of uniqueness is dealt with by considering a special class of “most
efficient” control structures, where efficiency is defined in terms of the ratio of
the number of rules executed over the number of rules applied. A practical
method (an algorithm, actually) is described to construct such a most efficient
control structure, based on the behavior of the system.

The last chapter, by Hermann Rodenhausen, contains a theoretical discus-
sion of the concept of self organization. A motivation for this concept is that
regularities observed in the functional structure of the brain, e.g. neighboring
cells on the retina are mapped onto neighboring cells in the cortex, cannot
be explained solely by genetic factors, or so it is argued by some researchers.
Following the line of Kohonen, Buhmann and others, Rodenhausen discusses
the possibility that topology preserving neural mappings could be generated by
inputs with an appropriate statistical structure. Using Kohonen’s formalism
and the framework of Markov processes, Rodenhausen presents some exem-
plary results showing how order could emerge as the limit of a converging
random process.

As suggested by this bird’s-eye survey, we are dealing here with a collection of
essays of a kind that would have appeared rather odd a couple of decades ago.
But times and mores have changed. Hypergraphs, lattices, production systems,
neural nets, have become household concepts in the cognitive sciences. To this
reviewer, this trend is indicative of a major, welcome shift. As witnessed by
the book edited by Dietrich Albert, the junior sister is claiming her identity.

Jean-Claude Falmagne
[rvine, November 30, 1993



Contents

1 Probabilistic assessment of knowledge 1
Jean-Paul Doignon
1.1 Introduction . . . . . . . . . . . ... 1
1.2 Knowledge structures . . . . . . ... ... 3
1.3 Surmise relations . . . . .. ..o oL D
1.4 Relationship between surmise relations and a class of knowledge
structures . . . . ..o 8
1.5 Surmise systems . . . . . ... .o 11
1.6 Surmise systems and knowledge spaces . . . . . ... ... ... 14
1.7 Well-graded knowledge spaces . . . . . .. ... ... ... ... 18
1.8 Deterministic assessment procedures . . . . .. ... ... ... 23
1.9 A setting for probabilistic assessment . . . . . .. .. ... ... 25
1.10 Questioning rule. . . . . .. ..o oo 30
1.11 Marking rule . . . . . .. ..o o 32
1.12 Unitary processes . . . . . . . . . . . 33
1.13 Basics of Markov chains . . . . . . ... ... 35
1.14 General results . . . . ... ... L 39
1.15 Some other examples . . . . . . . . .. ... ... ... ... .. 42
1.16 Another model for probabilistic assessment . . . . . . . . .. .. 49
1.17 Computer simulations . . . . . . .. ... ... ... ... ... 50
1.18 Conclusions . . . . . . . . . . ... 52

Combinatorial structures for the representation of knowledge 57

Cornelia E. Dowling

2.1
2.2
2.3
24
2.5

2.6

Introduction . . . . .. ... o7
Representing judgments with a relation . . . . . . .. .. .. .. 59
Representing of judgments by knowledge and failure spaces . . . 60
Combinatorial Galois connections . . . . . . . .. ... .. ... 64

The relationship between implication relations and knowledge
SPACES . v e e e e e e e e e e e 68
A procedure facilitating an expert’s judgments . . . . . . . . .. 72



vi

3 Establishing knowledge spaces by systematical problem con-

struction 78
Dietrich Albert and Theo Held
3.1 Imtroduction . . . . . . .. ..o 78
3.2 Knowledge spaces . . . . . .. ..o 80
3.3 ‘Component-based’ establishment of surmise relations . . . . . . 83
3.3.1 Union and intersection based rules . . . . .. .. .. .. 84
3.3.2 Product formation based rules . . . . . . ... ... 87
3.3.3 Comments and reflections on the concept of problem
components . . . ... oL o 91
3.4 Empirical examples . . . . .. ... o000 93
3.4.1 Construction and solution of chess problems . . . . . .. 93
3.4.2 Continuing a series of numbers . . . . . . .. .. .. .. 99
3.5 Relation to decision theory . . . . . . .. ... ... ... ... 105
3.6 Summary ... ... 107
4 Semantic structures 112
Jirgen Heller
4.1 Introduction . . . . . . . . . ... 112
4.2 Previous work . . . . ... 113
4.2.1 Dimensional representations: Semantic space . . . . . . . 114
4.2.2 Feature representations . . . . . . . .. ... ... ... 115
4.3 Formalizing semantic structures . . . . . . . ... ... ... 117
4.3.1 Partialorders . . . . . .. ... ... L. 118
4.3.2 Lattices . . . . . . . . ... 121
4.3.3 Concept lattices . . . . . ... .. ... ... .. 122
4.3.4 Lattice algebra . . . . . .. ..o 126
4.3.5 Homomorphisms and congruences . . . . . . . . ... .. 130
4.3.6 Supplementary Problems . . . . .. .. .. ... ... .. 132
4.4 A method for assessing semantic structures . . . . . . . . .. .. 133
4.4.1 Theory . . . . . . . 133
4.4.2 Experimental paradigm . . . . . ... ... 136
4.4.3 An empirical application . . . . .. ... ... 136
4.5 General discussion . . . . ... 141
5 Operations on cognitive structures — their modeling on the
basis of graph theory 145

Erdmute Sommerfeld and Fred Sobik
5.1 Knowledge representation — the problem of formation and trans-

formation . . . .. ..o 145
5.2 Graphs and structural information in knowledge psychology . . 146
5.3 Structural information — representation and interpretation . . . 148
5.4 Systematization and formalization of cognitive structure trans-

formations . . . . ... 159

5.4.1 Elementary graph transformations. . . . . . . . . .. .. 161



5.4.2 Formalization of cognitive structure transformations with-
out change of structural information content . . . . . . . 164
5.4.3 Formalization of cognitive structure transformations with
enlargement of structural information content . . . . . . 167
5.4.4 Formalization of cognitive structure transformations with
reduction of structural information content . . . . . . . . 171
5.4.5 Formalization of cognitive structure transformations with
enlargement and reduction of structural information con-
tent . ... 174
5.4.6 Application to psychological problems. . . . . . . . . .. 179
5.5 SUMMATY .« . o v v e e e e 184
Process knowledge in Production Systems 191
Cees Witteveen
6.1 Introduction . . . . . . . . .. ... 191
6.2 Production Systems . . . . . . .. ... 192
6.2.1 A general description of Production Systems . . . . . . . 192
6.2.2 A preview of the control identification problem . . . . . . 194
6.3 Preliminaries and notations . . . . .. ... ... .. .. .... 196
6.4 Programmed Production Systems . . . . . . ... ... ... .. 198
6.4.1 BehaviorofaPPS . ... ... .. ... ... ... 201
6.5 Finding a minimal control structure . . . . . . . ... .. .. .. 205
6.6 Inferring a PPS from a finite set of traces . . . . . . . . . .. .. 209
6.6.1 Samples and failure sets . . . . . . ... ... L. 209
6.6.2 Context-complete samples . . . . . .. ... ... .... 214
6.7 Discussion . . . . . . ... 220
6.7.1 Applications . . . . . ... ... 220
6.7.2 Further research . . . . . . . . ... .. ... ... . ... 220
6.7.3 Suggestions for further reading . . . . .. ... ... .. 221
Phenomena of self-organization 223
Hermann Rodenhausen
7.1 Introduction . . . . . . . . .. ... 223
7.2 Empirical observations and computer simulations . . . . . . .. 224
7.3 Formalization of the self-organization process . . . . . . . . . .. 227
7.4 Mathematical formulation of the ordering property . . .. . .. 230
7.5 Appendix . . ... 237
List of Symbols 240
Author Index 241

Subject Index 244



List of Tables

1.1
1.2
1.3
1.4

1.5
1.6

1.7

3.1
3.2
3.3
3.4
3.5

3.6

4.1

4.2

4.3

4.4

4.5

4.6

An excerpt of a test in arithmetics. . . . . . . . ... ... ... 1
The distances among the knowledge states of Example 1.7.1. . . 20
The matrix of transition probabilities in Example 1.13.1. . . . . 36
The matrix of transition probabilities between the ergodic Markov
states in Example 1.15.1. . . . . . . ... ... L. 44
Transition probabilities in the ergodic set of Example 1.15.3. . . 47
Average number of questions before isolating a single knowledge

state. . . ..o 51
Average distance between the correct knowledge state and the
remaining knowledge state. . . . . . .. ..o o1
Chess problems: correct and incorrect answers . . . . . . .. .. 98
Number series: problem components . . . .. .. .. ... ... 100
Number series: calculation rules and problems . . . . .. . . .. 101
Number series: correct and incorrect answers . . . . . . . . . .. 104
Examples for alternatives described by the attributes on five
dimensions . . . . . . . ... 106
Complete list of chess problems. . . . . . ... ... ... .... 109
Fictitious dissimilarity data on the set of kinship terms

S = {father, mother, son, daughter}. . . . ... ... ... ... 116
Formal context of binary relations R; to Rs. . . . . . ... ... 123
The number of concepts n. and the number of equivalence classes n,

of contextual synonyms. . . . .. .. ... 137

The results of testing the axioms for the empirical structure
(B,o,~). The symbols +, —, x denote that the corresponding
condition is satisfied, not satisfied, or not tested. . . . . . . . .. 137
Results of testing the axioms for the empirical structure (B, J).
The symbols +, —, x denote that the corresponding condition
is satisfied, not satisfied, or not tested. . . . . . . ... .. ... 138
Formal context derived from the semantic structure of Sub-
ject Ao oo 139



4.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Equivalence classes of contextual synonyms from the semantic
structure of Subject 6. The numbers refer to the labels in Fig-

ure 4.9. . . . L 141
A Production System for simple arithmetic . . . . . . .. .. .. 199
Sequence of computation states . . . .. .. ..o L 199
PPS for string reversal . . . . ... ... 210
Simple PPS for showing the insufficiency of complete samples . 214
Alternative PPS M’ . . . . . . .. ... 214
Example of a context-selection function . . . . . . .. ... ... 216
PPS for string-reversal . . . . .. .. ... L 216
Context-selection function for PPS . . . . . ... ... ... .. 217
Sample failure sets computed from sample S . . . . .. ... .. 218

6.10 The sets of sequences to build admissible extensions . . . . . . . 219



List

1.1
1.2
1.3
1.4
1.5
1.6
1.7

1.8
1.9
1.10

1.11
1.12

1.13

1.14

2.1
2.2
2.3
2.4

3.1
3.2

3.3
3.4

3.5

of Figures

An example of dependencies among chapters in a book. . . . . .
Two ways of listing prerequisite dependencies. . . . . . . . . ..
The surmise relation of Example 1.3.1. . . . . . . .. .. .. ..
A pictorial display of the clauses in Examples 1.5.1 and 1.5.3.
[lustration of Axiom 2 for surmise systems. . . . .. .. .. ..
The knowledge structure K3 from Example 1.6.1. . . . . . . ..
A diagram for a deterministic assessment procedure for the knowl-
edgespace K . . . . . . . .
The direct reachability relation in Example 1.13.1. . . . . . . ..
The reachability relation in Example 1.13.1. . . . . . . . .. ..
The direct reachability relation D on six of the Markov states
of Example 1.15.1. . . . . . . .. ..
The direct reachability relation discussed in Example 1.15.2.
The first two diagrams for the computation of the transition
probabilities in Example 1.15.3. . . . . . . . ... ... ... ..
The two last diagrams for the computation of the transition
probabilities in Example 1.15.3. . . . . . . . ... .. ... ...
[lustration of the model in Section 1.16. . . . . . . . .. .. ..

Graph illustrating the judgments from example 2.1.1 . . . . . .
Diagram illustrating the functions from Definition 2.4.3 . . . . .
Diagram illustrating the functions g and h from example 2.4.4 .
The correspondences between the implication relations I and I

and the families of subsets F and F;. . . . . . . ... ... ...

Hasse diagrams for Examples 3.1.1, 3.1.2 and 3.1.3. . . . . . ..
Surmise relation and knowledge states for the problems in @
(problems are marked by circles, states are marked by squares).
Surmise relation and knowledge states for Examples 3.2.1
and 3.2.2. . ..
Problem structure for the questions in () and an example con-
cerning calculation problems. . . . .. ... ... ...
Component structure and problem structure for Example 3.3.2.

37



3.6 Component structure and problem structure for Example 3.3.3.
3.7 Attributes and problem structure for Example 3.3.4.. . . . . ..
3.8 Attributes and problem structure for Example 3.3.5.. . . . . . .
3.9 Lexicographic order. . . . . . .. .. ... ... ...
3.10 A typical three move problem. . . . . . . . . .. ... ... ...
3.11 Positions in which the motives ‘fork’, ‘pin’, ‘guidance’, and ‘de-
flection’ occur. . . . . . ...
3.12 Hasse diagram for the problems identified with the elements of
the component space Fe. . . . . . ..o
3.13 Example for a problem (motives a, b,c). . . . ... .. ... ..
3.14 Chess problems: solution frequencies. . . . . . . . . . . ... ..
3.15 Chess problems: individual results of two subjects. Solid circles
denote correct answers, open circles denote wrong answers. . . .
3.16 Number series: Order of attributes and problems. . . . . . . ..
3.17 Number series: solution frequencies. . . . . . . . . .. .. .. ..
3.18 Number series: individual results of two subjects. Solid circles
denote correct answers, open circles denote incorrect answers.

4.1 Rooted tree representation of the dissimilarity measure ¢ of Ta-
ble 4.1. . . . . . .
4.2 Hasse diagrams of the partial orders (a) ({1,2,3,4,6},]),
(b) (2fabet CY and (c) ({1,2,3}x{1,2,3},<a). . .. ... ..
4.3 Hasse diagram of the concept lattice derived from the context
of Table 4.2. . . . . . . . . ..
4.4 Non-distributive lattice on the set {1, a,b,c, T}. . . . . .. ..
4.5 Semantic structure of Subject 1. . . . . . . ... ...
4.6 Semantic structure of Subject 4. . . . .. .. ..o
4.7 Semantic structure of Subject 3. . . . .. .. ..o
4.8 Semantic structure of Subject 2. . . . . ... ..o
4.9 Semantic structure of Subject 6. The labels refer to the numbers
of the equivalence classes of contextual synonyms in Table 4.7. .
4.10 Concept lattice corresponding to the semantic structures of Sub-
jects 2and 6. . . ...
4.11 Example from Kintsch (1972). . . . . . .. ... ... ... ...

5.1 A graph G and its formal description. . . . . . . ... ... ...

X1

86
87
89

116

127

150

5.2 Two graphs which can represent equivalent structural information.151

5.3 Graph G for Exercise 5.3.1. . . . . . ... ... ... ... ...
5.4 Graphs for Exercise 5.3.2. . . . ... ..o oo
5.5 The graph for Exercise 5.3.4. . . . . . . . ... ... ...
5.6 Set G of graphs for Exercise 5.3.5. . . . . . . ... ... .. ...
5.7 Example for a text and a representing graph as basis for different
selection functions and interpretation functions (paragraph 5.3)
and for the determination of structural information content with
respect to different interpretation systems (paragraph 5.3). . .

151
152
155
156

. 157



xii

5.8
5.9
5.10
5.11
5.12
5.13

5.14
5.15
5.16

5.17
5.18
5.19
5.20

6.1
6.2

7.1
7.2
7.3
7.4
7.5
7.6

Formation and transformation of cognitive structures. . . . . . . 159
Examples for the transformation of graph union. . . . . . . . .. 163
Graphs GG; and G, for Exercise 5.4.1. . . . . .. ... ... ... 163
Example for isomorphic mappings. . . . . . . .. ... ... .. 164
Graphs G, Hy, H, and Hs for Exercise 5.4.2. . . . . . ... ... 165
Example for the formation of transitive supplement and transi-

tive hull. . . . . . . . . 170
Graph for Exercise 5.4.3. . . . . . . ... ... 171

Pattern combination of the experiment by Offenhaus (1984). . . 171
Example for graphs coarsenings by vertex set partition and by

condensation. . . . . . . ... 176
Example for a hierarchical structure Gpie,. . . . . . . . . . . .. 177
Graph G for Exercise 5.4.4. . . . . ... ... ... 177
Example for a graph join. . . .. ... ... 00 178
Graphs GG; and G, for Exercise 5.4.5. . . . . . . ... ... ... 178
Control graph of M . . . . . . . . ... ... 200
Control graphs of the minimal systems inferred . . . .. .. .. 219

Example of a self-ordering process (from Buhmann et al., 1987) 225

Phoneme maps (from Kohonen, 1988) . . . . . .. .. ... ... 226
Feeler mechanism (from Kohonen, 1988) . . . . ... ... ... 227
Self-ordering process with a = 0.1, 250 time steps . . . . . . . . 233
Self-ordering process with a = 0.05, 500 time steps . . . . . . . 234

Self-ordering process with a = 0.01, 1000 time steps . . . . . . . 234



1 Probabilistic assessment of
knowledge

Jean-Paul Doignon®

Université Libre de Bruxelles, Département de Mathématiques, c.p. 216, Bd du
Triomphe, B-1050 Bruxelles, Belgium
E-mail: doignon@ulb.ac.be

1.1 Introduction

An easy and common way of assessing a student’s knowledge consists of a
written examination. A list of questions is presented, the student’s answers
are collected, and finally the examiner returns an appreciation, which usually
boils down to a single number or percentage. Table 1.1 presents an excerpt of
such a test in elementary arithmetics and will be used for exemplary purpose.
We first argue that the information provided by the testing procedure is poorly
reflected by a single number. Knowing that a student provided correct answers
only to questions, say, a, ¢, and e, entails more than a numerical appreciation
(60% correct) of his or her work. It shows mastery in performing multiplica-
tions, and deficiency in division operations. Weaknesses and strengthes of the
student’s preparation have thus been revealed. Hence advices for further study
can be inferred. Obtaining and exploiting the most precise information from

Table 1.1. An excerpt of a test in arithmetics.

a 2 x 378 =
b 322+7=
¢ | 14.7 x 100 =
d 6442 = 16 =
e | 587 x0.94 =

an assessment procedure is particularly needed in programmed courses. Any
computer-assisted instruction system should entail a module for uncovering
the user’s knowledge. A straightforward, set-theoretic model for encoding this
knowledge will be introduced below. This model constitutes the framework
in which we will design automatic procedures for knowledge assessment. Such
procedures should be efficient in many different senses that will be explicited

1Our work in this area is supported by NSF grant IRI 8919068 to Jean-Claude Falmagne
at the University of California, Irvine. We thank the editor and three anonymous referees for
their careful reading of a preliminary version of the manuscript, and for their useful remarks.



2 Jean-Paul Doignon

later on. In particular, they must avoid lengthy, multiple interrogations (by
taking advantage of the underlying structure of the material to be learned).
Only a few of the encoded questions will be asked — as few as possible is the
ultimate goal. Clearly, not all of the questions must be asked when the an-
swers collected at some time allow to draw inferences for other questions. In
our example, from a positive answer to question e we could surmise a positive
answer to questions a and c.

Deterministic procedures are easy to conceive, relying on a definite struc-
turing of the material, and on answers reflecting a clearly cut, steady state
of student’s knowledge. However, we may not take the answers as data per-
fectly reflecting the examinee’s knowledge. The responses we collect suffer
from various random perturbations, e.g. due to careless errors (in computa-
tions, in transcribing the answer, etc.) or lucky guesses (which are not limited
to multiple choice tests). Thus, our procedures must take into account these
perturbations inherent to the student’s behavior. As a result, the same ques-
tion will be asked perhaps more than one time — in some variant of another.
A well-defined questioning rule chooses the next question on the basis of the
(probabilistic) available information.

The aim of this chapter is to describe a theoretical model for the assess-
ment of knowledge that integrates such probabilistic aspects. We first need to
spell out a combinatorial formalization of the knowledge state of an individual
with respect to a given body of information. We thus define knowledge struc-
tures, knowledge spaces and well-graded knowledge spaces. After sketching
deterministic assessment-procedures, we introduce a general setting for proba-
bilistic procedures. Precise definitions of the questioning and so-called marking
rules follow. Convergence of a class of procedures is then studied in terms of
Markov chains (basic terminology is recalled). A brief report will be given on
computer simulations of these procedures, and also on large-scale implemen-
tations that are under way. All are based on a standard test in elementary
mathematics taken by 9th-grade students (about 15 years old) in New York
City; answer data were obtained from the Office of Educational Assessment for
80,722 students. The five questions in Table 1.1 are typical of this study.

A second class of probabilistic procedures is also mentioned. All the mate-
rial exposed in this chapter derives from recent investigations made by a team
of researchers led by Jean-Claude Falmagne, formerly Professor of Psychology
at New York University, and now at University of California, Irvine. It is a
pleasure to acknowledge his innovative ideas, to mention his clear view of the
topic developments, and to thank him for his constant enthusiasm. The bibli-
ography contains twenty or more references to the originally published work, in
particular Doignon and Falmagne (1985) and Falmagne and Doignon (1988b);
a scientific survey is available (Falmagne, Koppen, Villano, Doignon, & Jo-
hannesen, 1990). The actual exposition is of a more pedagogical nature and
does not cover all aspects of the work done so far. For instance, we leave aside
the problem of how to build a knowledge structure in a particular domain
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(for this topic, see e.g. Dowling, 1991a, 1991b; Kambouri, Koppen, Villano, &
Falmagne, 1991; Koppen, in press; or Koppen & Doignon, 1990).

1.2 Knowledge structures

The example of Table 1.1 will be intensively used. Some plain conventions are
to be made when analyzing such a test. First, we assume that each question
receives an answer which can be evaluated as correct or incorrect (thus a blank
answer is taken as a wrong answer). Under this sole hypothesis, we may just
assert the possibility of 2° = 32 patterns of responses (each question gener-
ates two types of responses). Thus, any possible dependency among different
items being ignored, each of the five questions has to be asked. Testing in this
traditional view imposes a predetermined, large number of steps. It should be
clear that in oral examination teachers strongly reduce the number of ques-
tions by making inferences from the collected answers, and also by specifically
selecting the next question. These two features of the examination process are
important; they are parts of the superior efficiency of oral testing over written
testing. Any good automated procedure should encompass these features and
exploit them to minimize the test duration.

Now what does lie at the heart of assessment procedures better than the all-
questions approach? There must be some dependency among the notions tested
by the responses, that is: from the mastering of one notion, the examiner can
infer the mastering of other ones. In our example, a correct answer to question e
reveals a good command of multiplication (be it by one-digit integers, or by
two-digit integers). We thus assume that a student who correctly answers
question e is also able to provide correct answers to questions a and c. Similarly,
a correct answer to question d could lead the examiner to surmise (without
asking the question) a correct answer to question b. Notice that these inferences
for correct responses have logical counterparts for incorrect responses. Hence
in the presence of an incorrect response to question b, we surmise that the
answer to question d will also be incorrect.

The discussion in this Section ignores all the possible perturbations that
we mentioned in the Introduction (Section 1.1). Here the answers are (tem-
porarily) supposed to precisely reflect the constant state of knowledge of the
examinee. We come, under this last assumption, to a combinatorial model in
terms of (naive) set-theory. The mathematical concepts to be used are very
simple ones (taught in secondary schools today), although historically they
were clearly conceived only in the second part of the nineteenth century. Be-
fore giving the definitions, let us make clear that we adopt a purely descriptive
approach to student evaluation. The notions tested by the questions are not
meant to be in any way ‘brain-located’. Since a testable theory is the final goal,
all speculative concepts are disregarded. Instead, questions asked and answers
collected are the central elements of the theory, and knowledge notions will be
defined from these elements (regardless of other metaphysical concepts).
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To start with, we consider a set of questions. In our example from Ta-
ble 1.1, we define @ = {a,b,c,d,e}. Now, any student who took the test is
characterized by the subset of questions he or she correctly answered. This
subset constitutes his or her knowledge state. Here are some of the knowledge
states corresponding to three (fictitious) students:

K, = {(l, b, C}a Ky = {d}a K3 = 0.

Thus, the first student gave correct responses only to questions a, b and c;
the last student to no question at all (here () denotes the empty set). All
the ‘possible’ knowledge states form a collection of subsets of the set (). For
instance, by observing a population of students, we could come up with a
collection Ky consisting of six knowledge states:

(1.1) K1 ={0,{a},{d},{a,b,c}, {a,d,e},{b,c,d, e},{a,b,c,d e}}.

Let us introduce some terminology.

DEFINITION 1.2.1 A knowledge structure consists of a finite set ) together
with a collection K of subsets of @, where K contains at least the empty set ()
and the whole set ). The elements of () are the questions, the members of K
are the knowledge states. We write (Q, K), or simply K if the set @ is implied
by the context. We also say that K is a knowledge structure (on Q). O

Notice that not any subset of ) needs to be a knowledge state, i.e. a mem-
ber of the given collection K. Also, the concepts introduced in Definition 1.2.1
are purely descriptive and involve no deep theoretical assumption. Stronger
features, such as an idea of dependency among questions, will appear in the
next Section. The finiteness of the set ) of questions will be assumed through-
out for simplicity (although it is not necessary for all of the definitions and
results).

Looking more closely at the knowledge structure K; in Equation (1.1), we
see that questions b and ¢ belong exactly to the same states, that is {a,b,c}
and {b,c,d,e}. On the contrary, questions b and e are distinguished at least
by the knowledge state {a,b,c}, and thus surely test different skills. Being
indiscernible with respect to the knowledge structure K, questions b and ¢
can be seen as bearing on the same notion, or, as we shall say, as defining the
same notion.

DEFINITION 1.2.2 Given the knowledge structure (@, K), define an equiv-
alence relation on the set ) by setting for questions ¢ and ¢’ from Q:

q is equivalent to ¢’ iff ¢ and ¢’ belong to exactly the same states.

Any equivalence class (with respect to that equivalence relation) is called a
notion for IC. Moreover, (Q, K) is discriminative when each notion consists of
a single question. O

ExaMPLE 1.2.1 For the structure Ky from Equation (1.1), the notions are

{a}, {b.c}, {d}, {e}.
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This structure is not discriminative. O

EXAMPLE 1.2.2 The knowledge structure (Q, L) with @ = {a,b,c} and
L =A{0,{a},{a,b},{a,c},{a,b,c}} is discriminative because each of its notions
consists of only one question. O

EXERCISE 1.2.1 List a few knowledge structures on the same five-element
set. Give a formula for their total number. O

EXERCISE 1.2.2 What are the intended meanings of the following condi-
tions in Definition 1.2.17

(i) 0 e K; (i) Q € K. O

EXERCISE 1.2.3 What is the least number of knowledge states in a dis-
criminative knowledge structure on 5 questions? More difficult: when there
are m questions, give the same least number as an expression in m. a

EXERCISE 1.2.4 Prove that the relation introduced in Definition 1.2.2 is
indeed an equivalence relation on the set ) (that is, satisfies reflexivity, tran-
sitivity, and symmetry). O

FOR FURTHER REFLECTION 1.2.1 Sketch ways to discover theoretically or
in practice ‘the most adequate’ knowledge structure associated to the test in
Table 1.1. If you rely on answers from a population of students, grossly evaluate
the number of students needed to collect ‘reliable’ data. O

1.3 Surmise relations

As announced in the preceding Section, we now refine the concept of a knowl-
edge structure in order to tackle the idea of a dependency among the questions.
A comparable structuring is sometimes made explicit by authors of university
manuals, when they show the dependencies among the chapters in an illus-
trative diagram. An example of such a diagram is given in Figure 1.1; the
readers see at a glance that chapter 8, say, has chapters 1, 2, 3, and 7 as
prerequisites. A similar idea of a prerequisite has important consequences for
our set of questions. For instance, returning to Table 1.1, elaborate multi-digit
multiplication as in question e supposedly relies on elementary multiplication
tested in question a. Consequently, from a correct answer to question e we
should infer a correct answer to question a. We say that we surmise mastery of
question a from mastery of question e. Formalizing the surmise idea leads to a
(mathematical, binary) relation on the set of questions. Thus, the statements

mastery of questions a, b, ¢ is surmised from mastery of question e,
mastery of question b is surmised from mastery of question d,
mastery of question c is surmised from mastery of question a.
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Figure 1.1. An example of dependencies among chapters in a book.

are altogether encoded in the following set S of pairs, where we shortly write ae
for the (ordered) pair (a,e):

S ={ae, be, ce, bd, ca}.
Thus S is a relation on the set Q = {a, b, ¢, d, e}; we will also write ¢Sq¢’ when

the pair gqq’ belongs to S. The relation S can be displayed in a diagram; see
the right part of Figure 1.2 (the left part will be explained in a few lines).

e e
a ¢ d a ¢ d
C o b c b

Figure 1.2. Two ways of listing prerequisite dependencies.

Some comments are in order here. Because of our presentation, the reader
probably thinks of this relation as encoding logical dependencies among the
tested notions. This is only one of the possible interpretations; another one
relates to the fact that we could work with a definite population of students.
The relation would then reflect the observed dependencies (due for instance to
the past curriculum of the students).

From a more technical point of view, we see that there is some redundancy
in the statements captured as above in the relation S. For instance, as pairs ca
and ae encode prerequisite dependencies, then logically pair ce must also; this is
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e
a Oy d
c b

Figure 1.3. The surmise relation of Example 1.3.1.

an application of a transitivity property. (A relation S on the set Q) is transitive
when for ¢, ¢/, ¢ in @Q, the following holds: ¢Sq¢’ and ¢'Sq” imply ¢Sq”.)
Assuming transitivity, we may adopt two different positions when listing the
surmise information: either we give a minimal information (in the example, we
would not list the pair ce since it is derivable from other pairs), or we give the
whole information (i.e. allowing for logical redundancy). The two cases are
illustrated in the left and right parts of Figure 1.2, respectively. The general
theory (as in Doignon & Falmagne, 1985) makes neither assumption. Here, we
will take the second position in view of simplicity. The relation is assumed to
be transitive, and also reflexive. (A relation S on the set @ is reflexive when
¢Sq holds for each ¢ in @).) In mathematics, such a relation is often called a
quasi order on Q.

DEFINITION 1.3.1 A surmise relation on the (finite) set @ of questions is
any transitive and reflexive relation on (). If S denotes this relation, we also
say that the pair (@, 5) is a surmise relation. O

Reflexivity of the surmise relation is assumed for convenience, without any
practical motivation met insofar. It is required for later results (e.g. the one-
to-one correspondence mentioned just after the statement of Theorem 1.4.1).

ExampPLE 1.3.1 Let @ = {a,b,¢c,d,e} and S = {aa,bb, cc,dd, ee, ae, be,
ce, bd, ca}. This surmise relation is depicted in Figure 1.3, which is very similar
to the part to the right in Figure 1.2: we just added a loop at any node. 0O

ExAMPLE 1.3.2 Let Q = {a,b,¢,d} and S = {aa,ab, ac, ad, bb, be, bd, cc,
cd,dd}. Here the surmise relation is a simple order (also called a total order,
a complete order, or a linear order). O

ExAMPLE 1.3.3 Let Q = {a,b,c,d} and S = {aa, bb, cc,dd}. This is typi-
cally a situation in which no prerequisite dependency exists among the ques-
tions. 0

EXERCISE 1.3.1 Draw figures representing the surmise relation in Exam-
ple 1.3.2. Simplify the intricated drawing into a simpler one by deleting loops
and all redundant pairs (as in the left part of Figure 1.2). 0



8 Jean-Paul Doignon

1.4 Relationship between surmise relations and a class
of knowledge structures

The surmise relation (@), S) provides us with information on the possible knowl-
edge states inside the set @ of questions (students are idealized in the sense
that their answers are coherent with S). Consider Example 1.3.1: no knowl-
edge state could contain question e while excluding question a. Otherwise,
some student could master question e without mastering all of its prerequi-
sites. As we thus see, the surmise relation S puts limitations on the possible
knowledge states. It is natural then to associate to S the knowledge structure
formed by all subsets of ) that represent the admissible knowledge states. In
this way, our structure makes room for each of the possible students whose
knowledge state does not conflict with the assumed prerequisite relation. To
the relation S in Example 1.3.1, the following knowledge structure is associ-
ated:

(1.2) Ko = {0,{b},{c},{b,c} {a,c}, {b,d},{a,b,c},{b,c,d},
{a,b,¢c,d},{a,b,c,e}, Q}.

Notice that the subset {a,b} is not a knowledge state, because the pair ca

is in the relation S; thus a student who masters question a will also master

question ¢. On the contrary, the subset {a,b,c} is a knowledge state, because

the prerequisites for questions a, b and ¢ all belong to {a, b, c}.

Knowledge structures associated in this way to surmise relations share re-
markable properties. For instance, if we take any two members of the col-
lection Cy from Equation (1.3), say {a,b,c} and {b, ¢, d}, we check that their
intersection {b, ¢} and their union {a,b, ¢, d} also belong to the collection K.
These two properties of closure under intersection and union are always true
for the knowledge states derived from a surmise relation. Moreover, in view
of the following Theorem 1.4.1 on quasi orders due to Birkhoff (1937), these
properties truly characterize the knowledge structures associated to surmise
relations.

DEFINITION 1.4.1 If S is a surmise relation on the (finite) set @ of ques-
tions, the associated knowledge structure has as knowledge states all subsets K
of ) satisfying for questions ¢ and ¢’ from Q:

if ¢Sq’ and ¢’ € K, then q € K. 0

Thus, to the surmise relation (Q, S), we associate through Definition 1.4.1
a knowledge structure (@, ). In fact, there are only two conditions to be
checked in order to establish this assertion, namely () € K, and Q € K. The
first condition holds because the empty set () trivially satisfies Definition 1.4.1
of a knowledge state (remember that an implication is true if its antecedent is
false). The second condition holds because the consequence of the implication
in Definition 1.4.1 is always true when K = Q).
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ExXAMPLE 1.4.1 The knowledge structure associated to the surmise rela-
tion from Example 1.3.1 was obtained in Equation (1.3). O

EXAMPLE 1.4.2 For the surmise relation in Example 1.3.2, the associated
knowledge structure is

K ={0,{a},{a,b},{a,b,c},{a,b, c d}}. O

ExaMPLE 1.4.3 For Example 1.3.3, each subset of ) is a knowledge state;
thus, K = 29 (this is the notation used here for the collection of all subsets

of Q). O

THEOREM 1.4.1 Let K be the knowledge structure associated to a surmise
relation on the set Q. Then any intersection and any union of knowledge states
in IC is also a knowledge state in KC. Conversely, any knowledge structure on @)
which is closed under intersection and union is derived from some surmise
relation on Q). O

In fact, a one-to-one correspondence between surmise relations on () and
knowledge structures on (), closed under intersection and union, will be estab-
lished in the proof. We recall that Theorem 1.4.1, together with the existence
of this correspondence, is due to Birkhoff (1937).

PROOF. Let (Q, S) be a surmise relation, and let (@, K) be the associated
knowledge structure. Given two knowledge states K; and K, from IC, we
show first that, according to Definition 1.4.1, K; N K, also belongs to /.
Assuming ¢Sq¢’ and ¢’ € K1 N K, for some questions ¢ and ¢’ from (), we have
¢ € Ky and ¢ € K,. Since Kq, Ky € K, there follows ¢ € K; and ¢ € K, by
repeated application of Definition 1.4.1, hence ¢ € K; N Ky. Thus, again by
Definition 1.4.1, K; N Ky € K. Now, for the union: if K, Ky € K, and ¢S¢/,
for questions ¢ and ¢’ with ¢’ € K, U K5, we have ¢ € K; or ¢ € K,. Hence,
q € Ky or g € Ky, thus g € K1 U K5. This shows K; U Ky € K.

We just proved that any knowledge structure associated to a surmise re-
lation is closed under both intersection and union. To establish the converse,
we consider a knowledge structure that is closed under intersection and union.
Denoting it by (@, K*), we want to show that it is associated to some surmise
relation on (). Define a relation S on @) by

(1.3) q¢Sq <= (for each K € K*: ¢’ € K implies q € K).

Then relation S is easily seen to be reflexive and transitive, in other words S is
a surmise relation. Call (Q, K) the knowledge structure associated to (@, S5).
Clearly, any knowledge state K from the original structure K* satisfies the
condition in Definition 1.4.1, and thus belongs to structure K. Conversely, we
will prove that K € K* when K € K. First, consider for ¢’ € K the following
subset of Q:

Ald)={reQlrSq}.
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Equation (1.3) defining relation S says exactly that rSq’ holds iff question r
belongs to each element of K* that contains question ¢’. Consequently, sub-
set A(¢) is the intersection of the elements from K* that contain question g.
By the assumption of closure under intersection, subset A(q’) belongs itself
to KC*. Moreover, because of the reflexivity of S, subset A(q') contains ¢, and
by Definition 1.4.1, it lies entirely in K (because ¢’ € K € ). All this implies
that K is the union of the various A(¢') for ¢’ € K, together with A(¢') € K*.
Hence K € K*. We have thus proved K = K* or: (Q,K*) is the knowledge
structure associated to relation S. This ends the proof of Theorem 1.4.1.
Notice that the first part of the proof builds, for a given surmise relation
S on @, a knowledge structure (@, k(S)) closed under intersection and union.
The second part of the proof builds a surmise relation r(K*) on @ for a given
knowledge structure (@Q,K*) closed under intersection and union, in such a
way that (Q,C*) is exactly k(r(KC*)). Thus, the composite mapping k o r is
the identity mapping on the set of all knowledge structures on () closed under
intersection and union. One can also check that r o k is the identity on the
set of all surmise relations on (). Thus the mappings k£ and r entail a one-to-
one correspondence between surmise relations and knowledge structures closed
under intersection and union. [ |

EXERCISE 1.4.1 Consider several surmise relations on a four- or five-element
set, and construct the associated knowledge structures. Decide whether the
latter are discriminative. O

EXERCISE 1.4.2 Suppose (@, K) is the knowledge structure associated to
the surmise relation S on (). Give a necessary and sufficient condition on S in
order that (@, K) be discriminative. O

EXERCISE 1.4.3 Consider the test with five questions described in Ta-
ble 1.1. Propose a surmise relation on the set {a,b,c,d,e}. Construct the
associated knowledge space. Is it discriminative? O

EXERCISE 1.4.4 Let Q = {a,b,c,d} and K = {0,{a},{c}, {a,c},{c,d},
{a,b,c},{a,c,d},Q}. Is the knowledge structure (@, K) associated to some
surmise relation? Same exercise for (Q,K’), with X' = K U {{a, b}, {b, ¢},
{b,c,d}}. When the answer is affirmative, find the surmise relation; is it
unique? O

EXERCISE 1.4.5 Let S and S’ be two surmise relations on the same set Q.
If S C 5, does some inclusion hold between the two associated knowledge
structures? 0

EXERCISE 1.4.6 Let S be a surmise relation on the set () of questions.
Suppose some questions are deleted from (), and denote by @’ the set of re-
maining questions. Define the restriction of S to '. Show how the knowledge
structure associated to (Q',.S’) is derived from the one associated to (@, .S).

O



1 Probabilistic assessment of knowledge 11

FOR FURTHER REFLECTION 1.4.1 Devise a test with a small number of
questions in another area of knowledge, say history, car repair, art study, ...
Build a corresponding surmise relation. Do some domains of knowledge make
your work easier? Can you explain why? O

1.5 Surmise systems

What is for us the practical relevance of the two closure properties obtained
in the previous Section? If two students, characterized by their knowledge
states K and K’, meet and share what they know, they will both end with the
union K U K’ as their common knowledge state. This is a kind of motivation
for assuming the closure of K under union. Even if the union K U K’ will not
necessarily be observed in practice, we want to have room for it in our collection
of knowledge states. On the other hand, there does not seem to be a similar
motivation for the intersection. Some readers could argue that the two students
would decide to retain only their common knowledge, that is K N K’. This
very pessimistic point of view is usually not taken in knowledge theories: the
cognitive development is rather assumed to be cumulative over time. Another
argument for keeping only one of the two closure conditions comes from a
mathematical result: closure under union leads to an interesting variant of
Theorem 1.4.1. (By replacing knowledge states with their complements in the
domain, a corresponding result would be obtained for families of subsets closed
under intersection; see Exercise 1.6.7.) To state this variant (as Theorem 1.6.1),
we need a generalization of surmise relations, that we motivate by a paramount
example.

Suppose that a student shows great ability in the resolution of systems
of linear equations. Can we deduce from this that he or she is confident in
matrix inversion, in Gaussian transformations of systems (by pivoting), or in
determinant computations? Of course, there is no reason to infer mastery of a
particular one of these methods for solving systems: we can just assert that at
least one of the techniques is mastered. In general terms, we are led to surmise
from the mastery of one question the complete mastery of at least one set of
questions among some list of sets. Calling these sets the clauses for the original
question g, we say: for at least one clause for ¢, each question in this clause is
mastered. Shortly writing “q” for “q is mastered”, the assertion encodes in a
formula of the form

(1.4) if ¢, then (¢ and @) or (g3 and ¢4 and gs) or (gs and ¢7).

In artificial intelligence, all such formulas under consideration are gathered in
a so-called AND/OR graph (see e. g. Barr & Feigenbaum, 1981; or Rich, 1983).
This approach requires the introduction of supplementary vertices for logical
connectives. In order to avoid adding extra elements, we prefer to work with
the related concept of a surmise system. We first look at examples, and then
state the precise axioms and definitions.

Let us consider a set () of questions and a mapping o that associates to
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Figure 1.4. A pictorial display of the clauses in Examples 1.5.1 and 1.5.3.

any element ¢ in ) a nonempty collection o(q) of subsets of ). These subsets
are the clauses for question ¢. In our approach, Equation (1.4) translates as

o(q) = {a, 2} {3, @a5 45} {46, a7} }-
EXAMPLE 1.5.1 Take @Q = {a,b,c,d,e, f} and set

o(a) = {{c}},
o(b) = {0},
(1.5) o(c) = {0},
o(d) = {{a,c}, {b}},

e) = {{a,b,c}}.

Here question a has only one clause, consisting of the single question ¢, while
question b has the empty set as its only clause. In other words, there is only
one way to master question a, through the acquisition of the single prerequi-
site ¢, while there is no prerequisite for question c¢. Question d, having two
clauses, shows a more interesting case: it can be mastered along two different
approaches, one implying the mastery of the sole question b, the other requiring
the preliminary mastering of questions a and c. All the information contained
in o is captured in Figure 1.4, with obvious conventions. O

The surmise relations that we introduced in Definition 1.3.1 can also be cast
in this way. More generally, to any relation S on (), we associate the mapping o
on the set @ with o(q) consisting of the single clause {¢’ € Q1¢'Sq}. That is,
we collect in a single clause all the ‘prerequisites’ for q.

ExAMPLE 1.5.2 For the relations from the left part of Figure 1.2, and from
Figure 1.3, we obtain:

oi(a) = {{c}}, os(a) = {{a,c}},
oi(b) = {0}, a2(b) = {{b}},
i(0) = {0}, oo(c) = {{c}},
( (
( (

Q

1(d) = {{o}}, oa(d) = {{d,b}},
16) = {{avb}}7 02 6) = {{eaa’bvc}}'

Q

)
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Figure 1.5. Illustration of Axiom 2 for surmise systems.

O

The two formal descriptions in Example 1.5.2 originate from the same prac-
tical example, but in the left case we looked for information saving, in the right
case we imposed transitivity and reflexivity. Recall that only the column to
the right corresponds to a surmise relation in the sense of Definition 1.3.1. As
we set forth mathematical postulates for surmise relations, we will now formu-
late three axioms for a mapping o. In the three statements, ¢ stands for any
question in ). Axiom 2 is illustrated in Figure 1.5.

Axiom 1 Any clause for question ¢ contains q.

Axiom 2 If¢ € C, with C' a clause for question ¢, there exists some clause C’
for ¢’ satisfying C" C C.

Axiom 3 Any two clauses for question ¢ are incomparable (i.e., neither is
included in the other).

The three axioms are satisfied by the mapping o5 in Example 1.5.2. We
leave the verification to the reader. On the contrary, Axioms 1 and 2 are
not satisfied by ;. For instance, question a belongs to the clause {a,b} for
question e, but the only clause {c} for a is not included in {a, b}; hence Axiom 2
is not satisfied for g = e.

Example 1.5.1 does not satisfy Axiom 1. In fact, we would rather encode
as follows the information it conveys.

EXAMPLE 1.5.3 Take @Q = {a,b,c,d, e, f} and set
o3(a) = {{a,c}},
o3(b) = {{b}}7
o3(c) = {{c}},
o3(d) = {{d,a,c},{d b}},
os(e) = {{e,a,b,c}}.

Axioms 1, 2, 3 are satisfied by this mapping o3. O
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Axiom 1 plainly generalizes the reflexivity condition for a relation, while
the second axiom extends the notion of transitivity. On the other hand, the
third axiom is always fulfilled by relations since each question has then a unique
prerequisite.

DEFINITION 1.5.1 A surmise system on the (finite) set ) is a mapping o
that associates to any element ¢ in () a nonempty collection o(q) of subsets
of @), and that satisfies Axioms 1, 2, and 3. The elements of the set () will
again be called questions. The subsets in o(q) are the clauses for question g.

(I

EXERCISE 1.5.1 The notation {(} could be disturbing to some readers.
Do you clearly see the differences among {0}, {0} and 0 ? O

1.6 Surmise systems and knowledge spaces

In the previous Section, we have defined surmise systems as a generalization
of surmise relations. Here we define the knowledge states of a surmise system.
Our aim is to state a variant of Birkhoff Theorem 1.4.1 (as Theorem 1.6.1).

DEFINITION 1.6.1 Let (@, o) be a surmise system. The knowledge states
of (Q, o) are all the subsets K of () that satisfy:

if ¢ € K, there exists a clause C' € o(q) such that C C K.

They constitute the knowledge structure associated to (@, o). Any knowledge
structure which is closed under union is called a knowledge space. O

The reader should by himself or herself uncover the motivation for this
definition of the knowledge states of the surmise system (@), o), and also check
that the family of all states is indeed a knowledge structure. The knowledge
states of Definition 1.6.1 can also be characterized as being a union of some
family of clauses (see Exercise 1.6.3); proving this will help to understand the
role of Axioms 1, 2, and 3 considered in Definition 1.5.1. Notice that the present
definition of knowledge states, when applied to a surmise relation (@, .S) (cast
into a surmise system by letting o(q) = {{¢' | ¢Sq}}), coincides with the
previous Definition 1.4.1. Here is another example.

ExaMPLE 1.6.1 Let @ = {a,b,c,d, e} and o3 be given as in Example 1.5.3
or Figure 1.4:

) {{a,c}},
(0) = {{b}},
o3(c) = {{c}},
) = {{a.c.d},{b,d}},
) = {{a,b,c,e}}.
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This is a surmise system. Its associated knowledge structure is
Ks = {0,{b}.{c}.{a,c}. {b,c} {b,d}. {a,b,c} {a,c d},
{b,c,d},{a,b,c,d},{a,b,c, e}, Q}.
The collection K3 is displayed in Figure 1.6, using plain conventions for showing
set-inclusion. The structure K3 is closed under union, in other words K3 is a
knowledge space. Nevertheless, this space is not closed under intersection,

since for instance the knowledge states {b,d} and {a,c,d} have {d} as their
intersection, a subset which is not a state. O

Figure 1.6. The knowledge structure K3 from Example 1.6.1.

We are now in a position to state and prove the promised variant of Birkhoff
Theorem 1.4.1.

THEOREM 1.6.1 The knowledge structure associated to a surmise system is
closed under union (but not necessarily under intersection), i. e. it is a knowl-
edge space. Moreover, any knowledge space is associated to some surmise sys-
tem. O

In fact, there is a one-to-one correspondence between surmise systems on )
and knowledge spaces on @, as will be shown in the following proof (originally,
a stronger result was established in Doignon & Falmagne, 1985).

PrOOF. If (Q),0) is a surmise system and (@, K) its associated knowledge
structure, pick K, Ky € K. We show that K; U Ky € K by referring to
Definition 1.6.1. If ¢ € K; U Ky, one has ¢ € K; or ¢ € Ky. Thus some
clause C' for ¢ is included in K; or K5, hence is included in K; U K5. This
establishes the first assertion (with Example 1.6.1 showing that closure under
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intersection can fail to hold). Now, consider a knowledge space (@, *). Since
Q@ is finite and @@ € K*, there is for each question ¢ at least one minimal
knowledge state containing ¢ (a knowledge state K is a minimal knowledge
state containing ¢ if ¢ € K, and there is no knowledge state K’ satisfying
q € K' C K). We define ¢ by collecting in ¢(q) all the minimal knowledge
states containing ¢q. Then Axioms 1 and 3 clearly hold for o. Axiom 2 is
also obvious: if ¢ € C € o(q), one can repeatedly delete questions from the
knowledge state C' until there remains a knowledge state containing ¢’ that is
minimal: there results an element C’ of o(¢') with C’ C C. Thus (Q,0) is
a surmise system. It remains only to establish the equality between K* and
the knowledge structure K associated to o. First, any K from K* will satisfy
Definition 1.6.1 (because if ¢ € K, there is a minimal C' for which ¢ € C' € £*
and C C K, and this C belongs to o(q)). Thus K* C K. Conversely, if
K € K, notice that K is a union of clauses, one in each o(q) for ¢ € K. Since
these clauses are by construction elements from K*, and K* is assumed to be
closed under union, it follows that K belongs also to K*. Similarly as in the
proof given of Theorem 1.4.1, we can derive a one-to-one correspondence (here,
between surmise systems on () and knowledge spaces on @)). It can be checked
that the actual one-to-one correspondence extends the previous one (meaning:
surmise relations cast as surmise systems correspond to knowledge spaces that
are closed under intersection). [ |

Let us repeat a few of our findings. To a surmise relation, we associated
a knowledge structure which is closed under both intersection and union (see
Definition 1.4.1 and Theorem 1.4.1). On the contrary, the knowledge struc-
ture associated to a surmise system is always closed under union, but not not
necessarily under intersection; it is a knowledge space (see Definition 1.6.1 and
Theorem 1.6.1). We started the previous Section with a discussion on the
relevance of the closure conditions. At this point, we clearly see that closure
under union is a ‘good’ axiom to impose on knowledge states. It exactly char-
acterizes families of states derived from surmise systems. In other words, a
knowledge space is one of the possible formalizations of a system of multiple
prerequisites. Being conceptually very simple, it is the model on which we will
base assessment procedures.

EXERCISE 1.6.1 Consider the following five questions (cf. Doignon & Falmagne,
1985).

i. Let p be the probability of drawing a red ball in some urn. What is the
probability of observing at least one red ball in a random sample of n balls, if
the sampling is done with replacement?

ii. What is the probability of the joint realization of n independent events,
each of which has a probability equal to p?

Z ) Perform the com-

iii. Give the formula for the binomial coefficient (

putation for n = 7 and k£ = 5.
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iv. In the experiment of Question i, what is the probability of observing
exactly k red balls? Give the formula, and perform the computation for n =5
and k = 3.

v. Let Pr(A) be the probability of an event A in a probability space. What
is the probability that A is not realized in one trial?

Propose a surmise relation on the set {a, b, ¢,d, e}. Propose a surmise system
on the set {a, b, c,d, e}, with at least one question having more than one clause
(an example is documented in Doignon & Falmagne, 1985). Construct the
associated knowledge spaces. Are they discriminative? O

EXERCISE 1.6.2 For any (finite) set @), describe the two surmise systems to
which are associated the ‘extreme’ knowledge spaces (@, {0, Q}) and (@, 29).
Do you find surmise relations; in other words, is there exactly one clause for
each question ¢ 7 O

EXERCISE 1.6.3 Show that the knowledge states of Definition 1.6.1 can be
characterized as being all the unions of clauses. a

EXERCISE 1.6.4 Suppose (@, K) is the knowledge space associated to the
surmise system (@), o). Give a necessary and sufficient condition in terms of
clauses of ¢ in order that (@, ) be discriminative. O

EXERCISE 1.6.5 Define the restrictions of a surmise system (Q, o) and of
a knowledge space (@, K), respectively, to a subset " of Q. Is the restriction
of (Q,0) again a surmise system, this time on @’? Is the restriction of (Q, K)
again a knowledge space, this time on @)’ ? Check whether restriction behaves
well with respect to the one-to-one correspondence from the proof of Theo-
rem 1.6.1. O

EXERCISE 1.6.6 (For new terminology in this Exercise, see Chapter 4 in
this book.) Let (@,K) be a knowledge structure. Is the partially ordered
set (K, C) a lattice? Same question for a knowledge space (@, ). Describe
meet and join in case you obtain a lattice, and interpret these operations in
the knowledge-representation context. O

EXERCISE 1.6.7 Let (Q,K) be a knowledge structure. Define the comple-
ment structure (Q,K¢) by K € K¢ <= @\ K € K. Show that this induces
a one-to-one correspondence between the set of knowledge structures closed
under intersection, and the set of knowledge structures closed under union. 0O

FOR FURTHER REFLECTION 1.6.1 How would you economically store a
huge knowledge space into a computer? (this question relates to the data
that need to be stored rather than to the computer internal organization). O
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FOR FURTHER REFLECTION 1.6.2 In Exercise 1.6.1, it is most probable
that many distinct surmise relations/systems will be proposed, and thus also
various knowledge spaces. How could one compare two of the proposed sys-
tems? and two of the built spaces? (for instance: how to measure their dissim-
ilarity?) These problems appeared in the analysis of a (real-life) mathematical
test having 50 questions. A related question: is there a sound method for
aggregating a family of surmise systems on the set @) (or respectively, knowl-
edge spaces on () into one surmise system (resp. knowledge space)? (see e.g.
Kambouri, Koppen, Villano, & Falmagne, 1991; or Villano, 1991). O

1.7 Well-graded knowledge spaces

We still have to introduce one more combinatorial condition on knowledge
spaces that will prove useful for the design of assessment procedures. Let us
compare the following two knowledge spaces on QQ = {a, b, ¢, d, e} (the first one
was described in Example 1.6.1 and pictured in Figure 1.6):

Ks = {0,{b},{c}.{a,c},{b,c} {b,d} {a,b,c} {a,c,d},
{b,¢c,d},{a,b,c,d},{a,b,c e}, Q},
L = {0,{a,b},{b,c,d}, {a,c d},{a,d, e}, {a,b,c, d},
{a,b,d, e}, {a,c,d, e}, {b,c,d, e}, Q}.

Suppose we want to trace the learning history of some student who starts
from mastering nothing in the set @ = {a,b,¢,d, e} and ends with mastering
each of the five questions. The successive steps will correspond to knowledge
states, each of which is obtained from the previous one by adding one single
question (the question that was learned at this step). For instance, two such
possible sequences in the context of the knowledge space K3 are

0, {b}, {b,c}, {b,c,d}, {a,b,c,d}, Q,
0, {c}, {a,c}, {a,b,c}, {a,b,c,d}, Q.

On the contrary, we cannot find in the knowledge space £ a sequence of knowl-
edge states from ) to @ that grows by one question at a time (simply because
there is no knowledge state formed by a single question). We will be interested
in knowledge spaces in which such sequences exist from ) to the whole set of
questions, and (more demanding) from any state K to any state K5 satisfying
K, C K,. As will be explained later in this Section (see after Example 1.7.5),
these knowledge spaces have mathematical properties of interest for the design
of assessment procedures.

DEFINITION 1.7.1 A knowledge space is said to be well graded when for
any two of its states, say K and K’', with K C K’, there is a sequence of
knowledge states Ko = K € K; C Ky C ... C K, = K’, where K;,; for
1=20,1,...,n— 1 1is obtained from K; by adding one single question. O

Well-gradedness can also be characterized in terms of the surmise system
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(see Koppen, 1991); only a slight variant of Axiom 2 from Section 1.5 is re-
quired. We leave the proof of Proposition 1.7.1 as an exercise, as well as that
of the subsequent Corollary 1.7.1 (see Exercises 1.7.2 and 1.7.3).

PROPOSITION 1.7.1 Let (Q,0) be a surmise system and let (Q,KC) be its
associated knowledge space. Then (Q,K) is well graded iff the following Con-
dition holds for each question q in @ and each clause C' in o(q):

if ¢ € C\{q}, there exists C' € o(q') with C' C C'\ {q}. O

EXAMPLE 1.7.1 The knowledge space on QQ = {a,b,c,d, e} defined by
Ks = {0.{b}.{c},{a,c} {b,c},{b,d},{a,b,c} . {a,c d},
{b7 C7 d}7 {a/7 b’ C7 d}7 {a7 b? C? 6}7 Q}

is well graded. By Example 1.6.1, we know that it is associated to the surmise
system (Q, o3) with

) = {{a,c}}

(0) = {{b}},
o3(c) = {{c}t},

) {{a,c,d}, {b,d}},
os(e) = {{a,b,c,e}}.

One easily checks that for any clause C' for any question ¢, the set C'\ {¢}
belongs to k3. This is easily seen to be equivalent to the condition in Propo-
sition 1.7.1. O

COROLLARY 1.7.1 The knowledge space associated to a surmise relation is
well graded iff it is discriminative. O

In the following example, we have a surmise relation whose associated
knowledge space is not well graded (and of course not discriminative).

ExXAMPLE 1.7.2 Let Q = {a,b,c} and S = {aa,bb, cc,ab,ba}. Then the
associated knowledge space (@, L) has £ = {0, {c},{a,b},Q}. Tt is not dis-
criminative, and a fortiori not well graded. O

The cardinality (number of elements) of the set A will be denoted by |A].
Thus, in Definition 1.7.1 above, we have |K;y; \ K;| = 1. Moreover, A A B
denotes the symmetric difference of the sets A and B, that is AA B = (A
B)U (B \ A). The mapping that associates to any two subsets A and B of Q)
the number |A A B| is a distance on the set 2% of all subsets of Q. (There
is a precise mathematical definition of ‘distance’, that we will not need in the
sequel). In particular the distance d(K, K') = |K A K’| between two states K
and K’ in a knowledge structure (@, K) has now a precise meaning. We define
the (closed) ball around a knowledge state, given some real number e:

B(K,e) = {K' € KId(K,K') < €}
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(thus this ball contains all knowledge states which differ by at most € questions
from the given knowledge state K; notice the similarity with the classical ball

in Euclidean space).

EXAMPLE 1.7.3 Take the same knowledge space as in Example 1.7.1. Ta-
ble 1.2 gives all distances between any two of the knowledge states. From it,

Table 1.2. The distances among the knowledge states of Example 1.7.1.

O|b|clac|be]|bd]|abe|acd |bed | abed | abee | Q

O [oj1|1]2(|2]2(3 |3 |3]| 4 4 |5
b [(1]0|2]3 |11 2 4 2 3 3 |4

c [(1]2|10] 1|1 3] 2 2 2 3 3 |4
ac (213111012 4|1 1 3 2 2 |3
be |2|1(1]2]|0]2] 1 3 1 2 2 |3
bd |2(1|3|4 (2|0 3 3 1 2 4 |3
abc {31221 ]|1(3] 0 2 2 1 1 13
acd 34121 (3|3 ]| 2 0 2 1 3 |2
bed 31223 |1 |1 2 2 0 1 3 |2
abed 41313122 |2| 1 1 1 0 2 1
abce |4(313|2 (24| 1 3 3 2 0 1
Q |5(41413 (3|3 | 2 2 2 1 1 10

we can quickly find balls, for instance

B({a,c}, 1)
B({b,c}, 1)
B({a,c},2)

B({b,c},2)

{H{a, e} {e} {a, b, ¢} {a, e, d} )

{{b, ¢}, {b}, {c} {a, b, ¢}, {b, e, d} };
{{a’7 C}’ {C}7 {a7 b’ C}’ {a’7 C7 d}’ ®7 {b7 C}?

{a/’ b? C’ d}7 {a7 b’ C7 e}};

{0, ¢}, {0} {c} {a, b, ¢}, {b, ¢, d},

0,{a,c},{b,d},{a,b,c,d},{a,b,c,e}}.

O

Let us now look more closely at the case ¢ = 1. The knowledge states in any
ball B(K, 1) are obtained either by deleting or by adding exactly one question
to K. Of course, not any question in () will work, that is produce from K a

new knowledge state.

DEFINITION 1.7.2 The fringe F(K) of a knowledge state K in a knowledge
space (@, K) consists of all questions ¢ such that

ge Kand K\{¢} €K, orq¢ K and KU{q} € K

O

EXAMPLE 1.7.4 For the same knowledge space K3 as in Example 1.7.3 or
Table 1.2, we obtain F({b}) = {b,¢,d} and F({b,c}) = {a,b, c,d}.

O



1 Probabilistic assessment of knowledge 21

PROPOSITION 1.7.2 FEach of the following two conditions on a knowledge
space (Q,K) is equivalent to the well-gradedness of (Q,K):

(i) for any two states K and K', with K # K,
(K AK') N F(K) #0;

(ii) for any two distinct states K and K' there exists a sequence Ko = K, Ky,
Ky, ...,K, = K' of knowledge states such that for j =0,1,2,....,n—1:

d(Kja Kj-i—l) =1 and d(K7 K/) > d(Kj+17 Kl) =

PROOF. a) We show that (i) follows from well-gradedness. Assume K’ Z K
(if this is not the case, then K ¢ K’, and a similar argument can be given).
As K U K’ is a knowledge state from IC, there must exist K; € K with
K Cc Ky € KUK’ and K; \ K consisting of one single question gq. We
have ¢ € (K A K') N F(K).
b) Assume the knowledge space (@, K) satisfies (i) and let us prove it satis-
fies (ii). Given K, K’ as in Condition (ii), we use (i) for obtaining a question
gin ( KAK)NF(K). Ifqe K\ K', weset K1 = K\ {¢};ifqge K'\ K,
we set K1 = K U {q}. In both cases, K; € K, d(K,K;) = 1, and also
d(K,K') > d(K3, K'). Hence we may use K as the first knowledge state to
be constructed in order to establish (ii). The second one is constructed by
applying the same argument to K; and K’. Repeating this process will lead
to a sequence that eventually ends in K’.
c) We show that a knowledge space (@, ) satisfying (ii) necessarily is well
graded. Given K, K' € K with K C K’', we consider a sequence as in (ii).
Then K; A K consists of one single question ¢g. Since ¢ € K or ¢ ¢ K’ con-
tradicts d(K, K') > d(K;, K'), we have K C K; C K'. Repeating the same
argument with K and K’, etc., we are able to construct the required sequence
of knowledge states from K to K. [ |

ExaMPLE 1.7.5 Consider again the same knowledge space K3 as in Ex-
amples 1.7.1, 1.7.3, 1.7.4, or Table 1.2. From Example 1.7.1, we know that
KCs is well graded. Thus Conditions (i) and (ii) do hold. For instance, setting
K = {b}, each other state K’ meets F({b}) = {b,c,d}. Taking K’ = @, we
find a sequence as in condition (ii):

{b} C {b,c} C{a,b,c} C{a,b,c,d} CQ. 0

Well-gradedness will be a useful assumption on knowledge spaces when we
will design assessment procedures. By Proposition 1.7.2(ii), we see that we can
transform any knowledge state into another one by a succession of elementary
changes (consisting each in the addition or deletion of one question), while
always keeping a knowledge state. Because of this nice feature, we may design
assessment procedures that explore the family K of states by making at each
step such an elementary change in the actual ‘approximate’ or ‘candidate’
state. These procedures will never be caught in a subfamily of K that does not
contain the knowledge state to be uncovered. Another interesting aspect of
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well-gradedness is relevant for the design of instruction paths: each knowledge
state can be reached from the empty set by successive acquisitions of one
question at a time.

EXERCISE 1.7.1 Are conditions (i) and (ii) in Proposition 1.7.2 equivalent
to the following variant of (ii)?

(iii) for any two distinct states K and K’ there exists a sequence
Ky = K, Ky, K,,...,K, = K’ of knowledge states such that for
7=01,...,n—1:

d(Kj,Kj+1) = 1 O
EXERCISE 1.7.2 Prove Proposition 1.7.1 and its Corollary 1.7.1. O
EXERCISE 1.7.3 Give another, direct proof of Corollary 1.7.1. O

EXERCISE 1.7.4 Is a well-graded knowledge space necessarily discrimina-
tive? and conversely? O

EXERCISE 1.7.5 Let (Q,K) be a well-graded knowledge space. If one
deletes (respectively, adds) knowledge states in order to get another knowl-
edge space (Q,K'), is (Q, K') necessarily well graded? O

EXERCISE 1.7.6 Let (Q,K) be a well-graded knowledge space. Assume
some of the questions are deleted, and Q' is the remaining set of questions. Is
the restriction (see Exercise 1.6.5) of K to )" a well-graded knowledge space?

(I

EXERCISE 1.7.7 Let (Q,0) be a surmise system, and (@, K) be its associ-
ated knowledge space. Is the following condition equivalent to well-gradedness
of (Q,K)? For all distinct questions ¢, r € @, the intersection o(q) N o(r) is
empty (i.e., no two distinct questions have a common clause). O

EXERCISE 1.7.8 Same as Exercise 1.7.6, with the following condition (cf.
Example 1.7.1). For each question ¢, and each clause C for ¢, the set C'\ {¢}
is a knowledge state. O

FOR FURTHER REFLECTION 1.7.1 Suppose that practical investigation
has lead to some knowledge space (@, K) that is not well graded. Is there a ‘nat-
ural’ way to add or delete knowledge states in order to obtain well-gradedness?
This is a presently unsolved question (a bit imprecise one also). Notice that
if (Q,K1) and (@, Ks) are well-graded knowledge spaces, then (Q,K; N Ky)
is a knowledge space, but not necessarily a well-graded one (can you give a
counter-example?). 0
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1.8 Deterministic assessment procedures

Let us reformulate our central problem. We have at hand a precise description
of the knowledge space (@, K). Each student in a certain population masters
some of the questions in ); it is assumed that the questions mastered always
constitute a knowledge state belonging to K. How can we efficiently uncover,
given a student in the population, which member of K represents his or her
knowledge state?

In a preliminary approach to the assessment problem, we make the following
simplifying assumptions (ignored in the later Sections). First, the knowledge
state of the student is taken as constant along the testing procedure. Sec-
ond, any of the responses will plainly reflect this knowledge state (that is, we
temporarily rule out any careless error or lucky guess). Thus avoiding any
randomness in the problem, we are to describe deterministic procedures for
the assessment of knowledge. As discussed in the Introduction (Section 1.1),
we want to avoid the all-question testing. Having at hand the collection /C,
we devise a better strategy for the assessment procedure. A list of knowledge
states is maintained; at each step, it retains the knowledge states compatible
with the information yet collected.

Here is an illustration based on the knowledge space (@, K3) from Exam-
ple 1.7.1 (see also Figure 1.6), that is @ = {a,b,¢,d, e} and

Ks = {0,{b},{c} {a,c},{b,c}.{b,d} {a,b,c} {a,c d}
{b7 C? d}7 {a’ b? C? d}7 {a7 b’ c’ 6}7 Q}'
Suppose that we first ask question a and obtain a correct response. Hence the
states 0, {b}, {c}, {b, c},{b,d}, {b, c,d} must be discarded because they do not

contain question a. We are left with the knowledge states in K3 containing a.
Their collection will be denoted as (K3),:

(K3)a = {{a,c},{a,b,c},{a,c,d},{a,b,c,d},{a,b,c e}, Q}.

NoTATION 1.8.1 For a knowledge structure (@, K), and a question ¢ from
Q, we set
(K)y={K eKlqe K},
and
(K);={KeKlqg¢ K}. O

Let us turn back to our illustration. If we ask question e after having asked
question a and then collect a wrong answer, there will remain as possible states

(IC3)¢1€ = {{a7 C}v {a7 b, C}’ {a7 G, d}7 {a, b, c, d}}
A correct answer to question b would then rule out the first and third of these

states. Finally, asking question d will discriminate between the remaining two
states. A correct answer, say, will leave

(IC?))aébd = {{aa b7 ¢, d}}
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Notice that we asked only four out of the five questions in Q.

The global procedure can be displayed in a diagram that explains itself (see
Figure 1.7) if read from left to right. A path from the node most on the left
to the external node showing a knowledge state captures one realization of the
deterministic assessment procedure. We see that the lengths of all these paths
are on the average shorter than 5. This is our gain, resulting from the assumed
organization of the material (in essence: not every subset of @) is a member

of K).

e
b
a
d
b
@
c
d
] {0}

H

Figure 1.7. A diagram for a deterministic assessment procedure for the knowledge
space Ks.

An intuitive idea for saving some of the further questions generates a rule
for question selection. After having received a correct answer to question a,
we are left with the following possible knowledge states:

{a,c},{a,b,c}, {a,c,d}, {a,b,c,d},{a,b,c,e},{a,b,c,d,e}.
At this time, we will surely not ask question ¢. Moreover, question d apparently
prevails over questions b and e, because it will for any response reduce the
number of possible knowledge states to 3 (while a correct answer to b or a
wrong answer to e will leave 4 knowledge states). In precise terms, we select
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the question ¢ that balances as closely as possible the number of remaining
knowledge states that contain ¢ versus the number of remaining knowledge
states that do not contain ¢q. Although this ‘splitting rule’ does not necessarily
generate a procedure with an overall minimum number of questions (see next
paragraph), it is a reasonable heuristic.

The design of a deterministic assessment procedure raises many questions
that we will not consider here. For instance, how to devise the ‘best’ assess-
ment procedure (with respect to some optimality criteria to be defined)? This
problem is intensively studied in computer science: given a set of external
nodes, or actions to be taken, a ‘good’ binary tree or decision table is sought.
The interested reader may consult Hyafil and Rivest (1976) and its references.

Returning to our context, we remark that there are situations in which
we discover assessment procedures before the true organization of the tested
information. From observing a teacher, we may record a test protocol for a
body of knowledge that is still imprecise to us. In other words, we have at
our disposal a diagram as in Figure 1.7, but without the labeling of the nodes.
Can we discover the set () and the collection K7 A partial, affirmative answer
can be found in Degreef, Doignon, Ducamp, and Falmagne (1986).

EXERCISE 1.8.1 Draw diagrams representing other deterministic assess-
ment procedures for the same knowledge space as in Figure 1.7. Count the
total number of nodes (internal nodes corresponding to questions asked, and
external nodes corresponding to knowledge states). What do you see? O

EXERCISE 1.8.2 For a knowledge space formed by k knowledge states, how
many nodes are shown in a diagram of a deterministic assessment procedure?
([

EXERCISE 1.8.3 Try to find, for the knowledge space (@, K3), a determin-
istic assessment procedure that minimizes
1. the average number of questions asked to assess the knowledge states; or
2. the maximum number of questions asked to assess a knowledge state.
(I

EXERCISE 1.8.4 Let (@, K) be the knowledge space associated to a simple
order. Call the height of a deterministic assessment procedure the maximum
number of questions to ask before assessing any state. What is the lowest
possible height? (This is similar to dichotomic search in a dictionary.) If the
(general) problem is too difficult, work it out for small numbers of questions

(IQ| =3,4,...). a

1.9 A setting for probabilistic assessment

From now on, we abandon the strong assumptions made in the previous Sec-
tion: lucky guesses and careless errors enter the theory. Also, the knowledge
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state of the student we are examining needs not be constant. Allowing for its
fluctuation is justified in our model by two arguments. First, some apparent
inconsistencies in the student’s responses may be explained this way. Second,
we cannot hope to make a precise, univoque estimation of the subject’s knowl-
edge state. The best we can achieve is to produce various likelihoods for a
number of knowledge states; hence there is no harm in admitting variations of
the student state.

This general approach requires some more mathematical tools, mostly from
elementary probability theory. Although we will not provide here definitions
of the basic concepts, we will review in Section 1.13 a few facts about Markov
chains. The reader is referred to Chung (1974) for an introduction to probabil-
ity theory. The remainder of this Section informally sketches a class of prob-
abilistic processes for the assessment of knowledge. Technical definitions are
collected in Sections 1.10, 1.11, and 1.12, mathematical results in Section 1.14,
and more elaborate examples in Section 1.15.

The way we model a student will be much more general than before. In
the special case considered until now, a student is represented by one single,
constant element in the family K of possible knowledge states. At present, we
allow fluctuations in the student’s knowledge. Thus his or her knowledge state
varies among (a limited number of) elements K in K. Moreover, we assume
that the relative frequencies of his various possible K are governed by accurate
probability values. To summarize, a student is modeled as a probability dis-
tribution 7 on K. Hence, for any knowledge state K in K, the number 7(K)
is the probability for the student to be, at any given time, in the knowledge
state K. By definition, 7 is any mapping from X to [0, 1] such that

T(K)>0 and ) w(K)=1
Kek
This probability distribution will govern in first approximation the responses
of the student. In the simplest case, the answer provided to question ¢ is
correct iff the knowledge state of the student contains q. However, in order to
tackle careless errors and lucky guesses, we attach to any question ¢ two real
parameters 3, and 7, with 0 < 3, <1 and 0 <, <1, and we assert:

given that the student is in the knowledge state K, the probability
at any time that his or her answer to question ¢ is correct equals

1 — 3, if g belongs to the student’s knowledge state K,
Yq if ¢ does not belong to K.

We now turn to the assessment process. It retains at any step a list of knowl-
edge states plausible for the student under examination. The family formed by
these knowledge states is called the marker (in Falmagne & Doignon, 1988b,
these knowledge states are said to be marked). Thus, the marker is a subfamily
of I, or equivalently an element of 2. When the correctness of an answer has
been evaluated, the marker is accordingly updated. More specifically, the new
marker is chosen according to a probability distribution on 2% that depends
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only on the last question and response, and the actual marker. Finally, we in-
dicate in a questioning rule how to choose the next question. It will be selected
in @) according to a probability distribution determined by the actual marker.

Random variables will be denoted by bold letters. A random wariable X
with values in the finite set V' is completely described by the probabilities
Pr(X = v) for all v € V, or, equivalently, by the probabilities Pr(X € T') for
all the subsets T' of V. (Except for Section 1.16, we need only consider finite
sets V; this makes the theory simpler.) The probability values Pr(X € T)
are what we need in practice. However, the mathematical definition requires
first the consideration of some probability space (€2, £, Pr), where 2 is a set of
elementary events, and Pr a probability measure defined on the collection & of
events, with £ a specific collection of subsets of (2. Probability theory imposes
axioms on the triple (2,&,Pr) (see e.g. Chung, 1974; or Feller, 1970). To
summarize grossly, the collection £ is assumed to be a o-algebra, and the
mapping Pr to be o-additive with values in the interval [0,1]. From these
technicalities, the reader needs to retain that a number Pr(F£) is attached to
each event F from &, and called the probability of event E. Mathematically, a
random variable defined on the probability space (€2, £, Pr) with values in the
finite set V' is a mapping X from €2 to V such that for any subset T" of V, the
subset {w € Q| X(w) € T'} of © belongs to £. One may then set

PriXeT)=PriweQlX(w)eTl),
for any subset T of V. In the following developments, we will meet many
random variables, for instance R, Ra, Rqg, and Qg; it is tacitly assumed that
they are all defined on the same probability space (which we do not need to
specify). In this way, for any subsets 77, Ts, T3, Ty of V| the following
Pr(R; € T1, Ry € Ty, Ryg € T3, Qs € Ty)
is meaningful. The same holds for conditional probabilities such as
Pr(R, € T, Ry € Ty Rip€T5,Qs € ) =p

whenever Pr(Rqg € T3, Qg € Ty) # 0; this number p is the probability of the
event (Ry € T1, Ry € T) knowing that (Ryp € T3, Qg € Ty) holds. It is thus
equal to

Pr({w € QIR (w) € T, Ra(w) € Ty, Ryp(w) € T3, Qs(w) € Ty)
Pr(w € Q1Ryp(w) € T3, Qs(w) € Ty)
Notice also that an expression like
Pr(R; € T} | Ry € T, Qg) = ¢
is to be interpreted as follows: for any subset T3 of V| one has
Pr(R, € 1 |Ryg € Ty, Qg € T) = £.

A stochastic process (X,,) is a sequence X1, X, ..., X, ... of random vari-
ables, all defined on the same probability space, and taking their values in
the same set. Most often, and it is always the case here, the index values
1,2,...,n,... designate successive time points. Turning back to knowledge
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assessment, we consider again a knowledge space (@, K), and introduce four
random variables at any step n:

R, for the correctness of the answer, with values in {0, 1},

Q, for the question asked, with values in @,
K, for the student’s knowledge state, with values in /C,
M,, for the marker, with values in 2%.

Altogether, there results a stochastic process (R, Q,, K,,M,). That is, for
each natural number n, we have a random variable (X,,) = (R, Qn, K., M,,).
This variable takes its values in {0,1} x @ x K x 2%, The reader may have
guessed that 0 stands for a correct answer, 1 for an uncorrected answer. Values
of R, Q,, K,,, M,, will often be denoted as r, ¢, K, and ¥ (or T) respectively.
The complete history of the stochastic process (X,,) from trial 1 to trial n will
be abbreviated as

Wn = ((Rna Q’ruKna Mn)7 sy (R17 QlaKlaMl))a

the empty story being designated as W,. Using these notations, our general
axioms concern the probabilities for the values taken by the random variables
R,, Q,, and K,,, for all n > 1, and the random variable M,,, for n > 1. Later
on, we will be more specific about the initial value M;. A few comments on
the axioms are given after Definition 1.9.1.

Marking rule. For some function u : 2F x {0,1} x Q x 28 — [0, 1],
Pr(M,1 =¥ R, =7Q, =¢,K,, M, =T, W, ) = u(¥,r,q7).
Knowledge rule. For some fixed probability distribution 7 on /C,
Pr(K, =K |M,, W, ) =n(K).
Questioning rule. For some function 7: Q x 29 — [0, 1],
Pr(Q, =qlK,, M, =¥, W, ) =7(q, V).
Response rule.
1-8, itgeK;

Par:]- n — 7Kn:K7Mn7Wn— = .
R, ~11Q, — ¢ o={ e

DEFINITION 1.9.1 A stochastic process (R, Q,, K,, M,,) governed by these
four rules will be called a stochasticassessment process parametrized by p, m,
7, By, and 7y, on the knowledge space (@, K) (where ¢ € Q). The quantities (3,
and v, are respectively the error and guessing probabilities for question ¢. O

The four rules used in Definition 1.9.1 constrain the evolution over time of
the process (R, Q,, K., M,,). More precisely, they specify the probabilities of
the random variable values at one step from the values taken at the previous
step. As a matter of fact, the value of K,, is governed only by the probability
distribution 7, constant over time, according to the Knowledge Rule. Starting
from an initial marker M, the values of Qq, in other terms the first question
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asked, have probabilities derived from the value of M; alone. The correctness
of the answer collected for that question has a probability computed in the
Response Rule from the actual knowledge state of the student, together with
the error and guessing parameters. Then the marker is updated: the proba-
bilities of the possible values of M, reflect the observed answer to the selected
question, and also the value of M;. A new iteration starts then. In a simi-
lar way, the probabilities of the values of Ks, Qs, Rs, and M3 are obtained
from the four rules. The same pattern repeatedly applies. From this general
scheme, it is easily understood how to build examples of stochastic assessment
processes: one only needs to specify the parameters p, m, 7, 8,, and 7,. (There
are some plain restrictions on their values, because the four rules must produce
conditional probabilities.)

The concept of a stochastic assessment process just defined is of a fairly
general nature. Of course, some technical conditions will soon be imposed on
these functions. Nevertheless, a few interesting properties hold in the general
case.

Recall that the stochastic process (X,,) is Markovian whenever the proba-
bilities of its values at step n + 1 depend only on the probabilities of its values
at step n, thus not on the whole previous history of the process. Formally, this
means

PI‘(Xn =X | Xn—l = Yn—1, Xn_g =Yn—2,--- ,Xl = yl)
= PrX,==x X, 1= Yn—1)-

Moreover, the process is homogeneous (with respect to time) when each of the
above transition probabilities remains constant over all steps n of the process.

It can be easily checked that a stochastic assessment process (X,) =
(R,,Q,,K,,M,) as in Definition 1.9.1 is Markovian and homogeneous, as
well as each of the following two derived processes: (M,,), and (Q,, M,,). Sec-
tion 1.13 contains a survey of the fundamental results on Markovian chains, a
particular case of Markovian processes.

Let us now give names to some special types of stochastic assessment pro-
cesses.

DEFINITION 1.9.2 A stochastic assessment process (R, Q,, K,, M,)
parametrized by u, 7, 7, §,, and 7, is fair when v, = 0 for each ¢ (no lucky
guess). The same process is straight when ~, = 0 and moreover 3, = 0, for
each ¢ (no lucky guess, no careless error). O

DEeFINITION 1.9.3 Let (R, Q,,K,,M,) be a stochastic assessment pro-
cess parametrized by pu, m, 7, 3,, and v, on the knowledge space (@), ). The
support of 7 consists of all knowledge states K in K such that 7(K) > 0.
Furthermore, 7 has unit support when there is only one knowledge state in its
support. O

Thus 7 has unit support when there is a (unique) knowledge state K with
m(K)=1.
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Even with the restrictions embodied in Definitions 1.9.2 and 1.9.3, the
stochastic assessment processes would remain quite general. We need spe-
cific questioning and marking rules; these will be described in the next two
Sections. Results about the convergence of the derived processes will then be
established in Sections 1.14 and 1.15. Moreover, computer simulations will also
be mentioned in Section 1.17. These results and simulations provide theoretical
support for the choice of definitions and model we have made.

EXERCISE 1.9.1 Determine whether the following processes derived from
the one in Definition 1.9.1 are Markovian: (R,), (Q.), (K.), (Rn, Qu),
(K,,,M,). O

1.10 Questioning rule

In order to prepare the formulation of a particular questioning rule, let us
expose the underlying idea, give a preliminary example and state some def-
initions. At the start of the assessment process, we have no information on
the examinee knowledge. It thus makes sense to put all the knowledge states
in the marker, that is M; = K. Inspired by the splitting rule introduced in
Section 1.8, we decide to select a first question which on the average reduces
the size of the marker as strongly as possible. The same idea can be applied in
the choice of the next questions. Nevertheless, such a rule will surely leave us
at some step with a marker consisting of a single knowledge state (recall that
KC is finite), in which case we want to explore knowledge states that resemble
to our actual unique candidate. Therefore we slightly generalize the above for-
mulation as follows. Given the actual marker ¥, we first build the collection
of all knowledge states that are not too far away from a member of . Then,
we pick a question that splits this new family.

To formalize this, we will rely on the following concepts, derived from the
distance d(K, K') between knowledge states K and K’ (see Section 1.7, para-
graph before Example 1.7.3).

DEFINITION 1.10.1 The e-neighborhood N(W,e) of some family ¥ of
knowledge states in the knowledge space (Q,K) consists of all knowledge
states K’ with distance at most € to some member of W:

N(U,e) = {K' € K|d(K,K') < ¢ for some K € U}.
Any question ¢ in @) determines two subcollections of N (¥, ¢) with respect to
membership of ¢:
N,(V,e) = {K'eKlge K',d(K,K') < ¢ for some K € U}
= N(U,e)NK,,
Nyj(U,e) = {K'€Klqg¢ K',d(K,K') < e for some K € U}
N(U,e) N K. O

For simplicity, abbreviations like N (K, ¢€) for N({K}, €) will be used.
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ExamPLE 1.10.1 Consider again the knowledge space (@, K3) (see Exam-
ple 1.7.1 or Figure 1.6):

Ks = {0,{b},{c},{a,c},{b,c},{b,d},{a,b,c},{a,c,d},
{b,¢,d},{a,b,c,d},{a,b,c,e},Q}.

Assume € = 1, and take W = {{a,c}, {b,c}}. Then one derives (referring to
Table 1.2):

N(W, 1) = {{b},{c},{a, c}, {b,c}, {a, b, ¢}, {a, ¢, d}, {b, ¢, d} },

and
No(¥,1) = {{a,c},{a,b,c} {a,c,d}},
Na(¥,1) = {{b},{c}, {b,c},{b,c,d}},
Ny(W, 1) = {{b},{b,c}.{a,b,c}, {b,c,d}},
Ny(¥,1) = {{c}{a,c} {a,c,d}},
Ne( = {chAa e} {b, e} {a,b,c} {a, ¢, d}, {b,c, d}},
Ne(W,1) = {{b}},

= {{a,c,d}, {b,c,d}},

= {{b}v{c}7{a7 0}7{b7 0}7{a7 b, C}}:

= @7

= {{b},{c},{a,c},{b,c}, {a,b,c} {a,c,d},{b,c, d}}. O

Before formulating a particular questioning rule, let us make clear that we
need a value for € to build an eneighborhood of the marker. A function of
the size of the marker itself will be used. If ¥ denotes the marker, the value r
of € is thus derived from |W¥|. Then N,(¥,r) and Ngz(¥,r) make sense: they
contain all the knowledge states K at distance at most ¢ from some member
of W, with moreover ¢ € K, resp. ¢ ¢ K. The next question ¢ is chosen in
order to balance the sizes of these two families of knowledge states, that is ¢ is
taken in such a way that the two numbers |N,(V, )| and | Nz (¥, r)| are as close
as possible one to the other.

e e eie e e e e’
T T T T T G

DEFINITION 1.10.2 Let € be some function from the set of nonnegative
integers to the same set. The following questioning rule is said to be e—half-
split. If U denotes the actual marker, set » = €(|¥|). The next question is
uniformly drawn among the set of questions that minimize the absolute value

(1.6) [|Ng(¥, )| = [Nz (¥, )] O

Example 1.10.2 will illustrate this Definition. In the formal notations of
Definition 1.9.1, the questioning rule is e-half-split when 7(g, ¥) has a constant
value for each question ¢ that minimizes the quantity in Equation (1.6), and
value 0 for each other question.

ExAMPLE 1.10.2 Following Example 1.10.1 on, assume the marker is

U= {{av 6}7 {bv C}}
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If €(2) = 1, the values of the absolute size-differences are 1, 1, 5, 3, 7 for
respectively questions a, b, ¢, d, and e. Hence, according to Definition 1.10.2,
the next question will be a or b, each with probability 0.5. This really appears
as a good choice for discriminating between {a, c} and {b, c}. O

EXERCISE 1.10.1 Starting with K3 as in Example 1.10.1, how will the first
question be chosen? That is: give for any question ¢ in () the probability that
q will be asked at step 1. O

1.11 Marking rule

The design of a marking rule follows from the discussion in the previous Section.
Recall that at any step a question is selected to split a family of knowledge
states T that is ‘slightly’” larger than the present marker. We will define the
new marker as formed by the knowledge states in T that are consistent with
the information provided by the last answer and question. Notice that this
rule is almost deterministic, in the sense that the new family is well-defined,
not chosen among several ones.

We need a more stringent definition of the family Y. If ¥ is the marker,
we set T = N(WU,r) for some value of r. In Falmagne and Doignon (1988b),
r is taken as an unspecified function from the size |¥|. Here, we will restrict
ourselves to a simpler case. When the marker contains more than one knowl-
edge state, we decide r = 0, henceforth T = W. Otherwise ¥ = {K} for some
knowledge state K. We put again » = 0, except when the collected answer
does not ‘confirm’ K. This exception happens in two cases: when the answer
to the last question ¢ is correct and ¢ ¢ K, or when it is incorrect and ¢ € K.

DEFINITION 1.11.1 The marking rule is selective when for n > 0 the value
of M, is derived with probability 1 from the value ¥ of M,,, according to
the following cases.

Case (i):

IM,,| > 1, R,=1 Q,=g¢, and M, 11 = ¥;

Case (ii):

M,|>1, R,=0, Q,=g, and M,, 11 = Vg

Case (iii):

M, ={K}, R,=1, Q,=q€ K, and M, ;; = {K};

Case (iv):

M, ={K}, R,=1, Q,=q¢¢K, and M, =N,({K},1);
Case (v):

M, ={K}, R,=0, Q,=g¢cKk, and M, =N,({K},1);
Case (vi):

M, ={K}, R,=0, Q,=q¢¢ K, and M,;; = {K}. 0
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ExaMPLE 1.11.1 Take again the knowledge space in Figure 1.6 or Ta-
ble 1.2:

Ks = {0,{0},{c} {a,c},{b,c}, {b,d}, {a, b, c}, {a, ¢, d},
{ba C, d}a {(Z, b7 C, d}7 {CZ, b7 C, 6}7 Q}
Each of the six cases in Definition 1.11.1 will be illustrated (statements are to
be understood with probability 1). Notice first

N({a,c}, 1) = {{c}.{a,c}. {a,b,c}, {a,c, d}}.
Then:

(i) and (ii): let M,, = {{a, ¢}, {b,c}}, and Q,, = a.
If R, =1, then M,,,; = {{a,c}}, else M,, 11 = {{b,c}};
(iii) and (v): let M,, = {{a,c}}, and Q,, = a.
If R, =1, then M,,,; = {{a, c}}, else M,, ;1 = {{c}};
(iv) and (vi): let M,, = {{qa,c}}, and Q,, = b.
If R, =1, then M1 = {{a,b,c}}, else M,,11 = {{a,c}}. 0

While reading Definition 1.11.1, the reader should immediately raise an
objection about the cases (iv) and (v). Notice that for ¢ ¢ K, the family
N,({K},1) is either empty or formed by the single set K U {q}, and that for
q € K, the family N;({K},1) is either empty or formed by the single set
K\ {q}. An empty marker would be nonsense (notice that we intentionally
forgot about the case M,, = () in Definition 1.11.1). If we make no assumption
on the knowledge space (@, K) under consideration, Cases (iv) and (v) could
lead to M,,.; = (. Clearly, the questions ¢ guaranteeing a nonempty new
marker in Cases (iv) and (v) constitute the fringe F'(K) (cf. Definition 1.7.2),
and we want to have both

(Q\K)NF(K)#0 for K#Q, and

KNF(K)#0 for K #0.
By Proposition 1.7.2(i), both requirements are surely fulfilled when (Q, K) is
well graded. This assumption will be part of our definition of unitary processes

for knowledge assessment (see Definition 1.12.1). There is no harm in deleting
the empty set from the set of possible values for the marker.

EXERCISE 1.11.1 Let ¢ be a question and K be a knowledge state in a
knowledge structure (@, K), with ¢ ¢ K. Show that, in general, the cardinality
of the set Ny ({K},1) can take only two values. Characterize the situation in
which it is equal to 1, by referring to F'(K). 0

1.12 Unitary processes

The definition we now state was prepared along the two preceding Sections.

DEFINITION 1.12.1 Let (X,) = (Ry, Qn, K,,,M,,) be a stochastic assess-
ment process with M,,, for n > 1, taking as values nonempty subfamilies of the
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family K of knowledge states. Assume its underlying knowledge space (@, K)
is well graded (Definition 1.7.1), its questioning rule is e-half-split (Defini-
tion 1.10.2), its marking rule is selective (Definition 1.11.1), and moreover

e(l) =1, e(n) =0 forn > 1.
Then (X,,) will be said unitary, or for short called a unitary process. Its unspec-

ified parameters, denoted as before, are now only the 3, (error probabilities),
7, (guessing probabilities) and 7. O

As a matter of fact, a small additional requirement is needed in this defi-
nition; see Remark 1.12.1.

Let us first collect some easy results, among whose some have been yet
suggested.

PROPOSITION 1.12.1 Assume that a unitary process satisfies M,, = { K'} at
some step n, with the fringe F(K) of the knowledge state K satisfying |F(K)| >
2. Then Q,, takes with probability 1 its value in F(K), and each question in
F(K) will be asked at step n with probability 1/|F(K)|. O

PROOF. The thesis derives from Definition 1.10.2. Just remark that
(1.7) [Ng({E} D] = [Na({K}, 1)
equals
|F(K)|—2 when ¢e€ KnNF(K),
)| when ¢ € F(K)\ K,
|F(K)| when ¢ e K\ F(K),
)| when ¢ ¢ KU F(K).

Thus, assuming |F(K)| > 2, the absolute value of the quantity in Equa-
tion (1.7) is minimized for ¢ € F(K). [

REMARK 1.12.1 Notice that the assumption |F/(K)| > 2 in Proposition 1.12.1
is satisfied in a well-graded knowledge space for any knowledge state K with
K # () and K # @Q (because of the existence of two knowledge states K
and K5 such that K; C K C Ky and |K \ K| = |K> \ K| = 1). There can be
only two special cases in which |F(K)| = 1: when K = ) and there is only one
knowledge state of cardinality 1, or K = () and there is only one knowledge
state of cardinality |@| — 1. As we need the conclusion of Proposition 1.12.1 in
these cases also, we add the following requirement in Definition 1.12.1: in these
two special cases also, Q,, takes with probability 1 its value in the fringe F'(K)
(which is clearly formed by a single question). O

PropPOSITION 1.12.2 Consider again a unitary process. Then
Pr(My1 = {K U{Qu}} [Qu € (Ko \ K) N F(K),M, = {K}.K, = Ko)
= 1- ﬂQn' O
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We leave the proof as an exercise, as well as the derivation of similar state-
ments (see Exercises 1.12.2 and 1.12.3).

Any unitary process (X,) = (R,, Qn, K,,M,) is a Markovian process,
as is the derived process (M,,) (see before Definition 1.9.2: transitions from
the value at one step to the value at the next step obey probabilities that
do not depend on the previous history of the process). The main theoretical
problems concern (M,,) and will be investigated in terms of Markov theory.
For instance, does the evolution over time of (M,,) tell us something about the
probability distribution 77 Uncovering 7 is our ultimate goal. Nevertheless,
it would be interesting to obtain partial information, e.g. to determine the
support of 7 (family of states K for which w(K) > 0). Or one could make
stronger assumptions on the process. An important one is to work under
the hypothesis w(Ky) = 1 for some knowledge state K. Thus, the student’s
knowledge remains almost stable; only accidental deviations will be observed.
This case, although very simplified, is an important one from a theoretical point
of view. Our unitary processes should uncover the student’s distribution 7 at
least in that case! Positive results are reported in Section 1.14. Some other,
non-elementary, situations will be analyzed in Section 1.15.

EXERCISE 1.12.1 Compute
[Ng({E} D] = [Na({K}, 1)

in the four cases mentioned in the proof of Proposition 1.12.1. O
EXERCISE 1.12.2 Establish the formula in Proposition 1.12.2. O

EXERCISE 1.12.3 Derive other formulas similar to the one in Proposi-
tion 1.12.2, for instance give

Pr(M,;, = {K} Q. € (Ko \ K)NF(K),M, = {K},K, = K),
PI‘( n+l = {K \ {Qn}} ‘ Q, € K \ KO) ( ) M, = {K}aKn = KO):
Pr(Mpy1 = {KU{Q.}}1Q, € F(K)\ (KoUK),M, = {K}, K, = Ky),

As a matter of fact, one can compute all the probabilities of transitions from
M,, = {K} to possible values of M,, 1, assuming K,, = {Kj}. O

1.13 Basics of Markov chains

Some basic terminology of Markov chains is settled in view of the next Section.
The reader is referred to classical treatises for precise definitions and rigorous
statements of results. We recommend for its remarkable pedagogical approach
the textbook by Chung (1974), and for more advanced developments Kemeny
and Snell (1965) or Feller (1970).

Only homogeneous finite Markov chains are of interest to us here. For all
this Section, let (X,,) be a Markovian stochastic process (as in Section 1.9,
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all random variables are defined on a fixed probability space (€2, &, Pr)). We
assume again that X,, takes its values in a finite set V', whose elements will
be called Markov states and denoted as i, j, ... By assumption (with the
conventions made in Section 1.9), we have:
Pr(X, = i|Xoo1 = 5, X2 = Juas - X1 = 1)

= Pr(X,=ilX,1=7)

= Dij,
where, by the granted homogeneity, the transition probability p;; from j to ¢
does not depend on n. Accordingly, we say that (X,,) is a (finite, homogeneous)
Markov chain.

Let us first study the relative reachability among Markov states. When
pi; > 0, we say that ¢ is directly reachable from j, and write jDi. The transitive
closure of the relation D on V' is called the reachability relation, and is denoted
by R. One can show that jR: is equivalent to the following assertion: if the
process is in Markov state j, then the probability is positive that it will at
some later moment be in state 7. More precisely, the following holds:

for every n > 1, there is some m > 0 such that :
Pr(X,im =] X, = j) > 0.

Notice that the relation R captures only a small part of the data in the
matrix (p;;) of transition probabilities (only positiveness of numbers matters
for deriving R).

ExXAMPLE 1.13.1 Set V' = {1,2,...,11} and take the 11 x 11 transition
probabilities in the matrix [p;;] shown in Table 1.3. All the information, to-

Table 1.3. The matrix of transition probabilities in Example 1.13.1.

o o610 O O O O O O 0 o0
012030 0O O O O 0 0 0 O
03 611 o O O O O O 0 O
06 01 0 06 O O 02 0 0 0 O
o o o 040 O 080 0 0 O
o o o o0 1 o0 0 0o 0 0 O
o 620 0 O 1 O O O 0 O
o 610 O O O O O o0 0 1
o o o o0 o o o0 1 0 0 O
o o0 o o o o o0 o0 1 o0 o0
o o610 O O O O O 0o 1 o0

gether with the relation of direct reachability, is displayed in Figure 1.8. The
relation of reachability is shown in Figure 1.9. There are clearly subsets of
{1,2,...,11} from which no ‘arrow’ emanates (that is, starts from a Markov
state in the subset and ends in a Markov state out of the subset); this is the
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Figure 1.8. The direct reachability relation in Example 1.13.1.

case for {4,5,6, 7}, for {3}, for {3,4, 5,6, 7}, and also for {8,9,10, 11}, but not
for {1,2,4,5,6,7} or {1}. O

A subset C' of the set V' of all Markov states is closed when jDi never
holds for j € C'and i € V' \ C. A closed set C' of Markov states is an ergodic
set when moreover any i € C' can be reached from any j € C' (allowing i =
j). In Example 1.13.1, the ergodic sets are {3}, {4,5,6,7}, and {8,9,10,11}.
Without entering into details, we mention that the last two ergodic sets differ
in that the second is periodic (a return to 8 is possible only after a number of
steps which is a multiple of 4), while the first is not. A Markov state is said
to be ergodic if it belongs to some ergodic set; otherwise, it is transient (in
Example 1.13.1, 1 and 2 are the transient Markov states).

One of the main problems about a Markov chain is to determine its asymp-
totic behavior. For instance, in the ‘long’ run, the values of the chain will be
(with a ‘high’ probability) ergodic Markov states; more precisely,

lim Pr(X,, takes its value in some ergodic set) = 1.

n—oo
Moreover, if the chain ever comes in an ergodic set, it will stay there (this asser-
tion holds with probability 1). Assume now that the chain in Example 1.13.1
at some step comes into the ergodic set {4, 5,6, 7}, and let us study the result-
ing chain at later stages; we suppose that subsequent values are in that set.
Which are the asymptotic probabilities of the various Markov states 4, 5, 6, 7,
if these asymptotic probabilities make sense? Using aperiodicity, it is possible
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Figure 1.9. The reachability relation in Example 1.13.1.

to prove that the probabilities for the various Markov states at step n, that is
Pr(X,, =4), Pr(X,=5), Pr(X,=6), Pr(X,=7),

respectively converge to the values of a well-defined probability distribution
on {4,5,6,7}. Moreover this limit, or asymptotic, distribution probability has
the particularly nice property of remaining stable under one-step transitions.
To be more precise, let us consider the matrix of transition probabilities of
the Markov chain restricted in the ‘obvious way’ to {4, 5,6, 7}. With rows and
columns indexed by the Markov states 4, 5, 6, 7 in that order, this matrix
equals

06 0 0 02
04 0 0 08
0O 1 0 0
0O 0 1 0

The limit-distribution probabilities p4, ps, ps, pr for the Markov states 4, 5,
6, 7 satisfy the following system of linear equations (expressing stability under
one-step transitions):

04 0 0 08 Ds _ s
0 1 0 0 | |p | — |wp]|
0O 0 1 0 pr p7
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and

Ps+ps+ps +pr = 1.

Whence the unique solution

1 2 2 2

7 p5:?, pﬁz? p7:§-

This probability distribution is the (unique) stationary distribution of a Markov
chain having only one ergodic set C', with the further assumption that this set C'
is aperiodic. It gives a fairly complete information on the asymptotic behavior
of the chain (X,,) from Example 1.13.1, restricted to C' = {4,5,6,7} — or of
the original chain (X,,), assuming it eventually enters {4,5, 6, 7}.

Another interesting feature of the limit distribution obtained above relates
to ‘horizontal averaging’. Assume one counts, among the n first steps in which
the chain (X,,) is in the set C, the numbers of times it is in each of the respective
Markov states forming C'. Thus, the relative frequencies of X,, = 4, X,, = 5,
X, = 6, X,, = 7 are obtained. A theoretical result asserts that these relative
frequencies converge (for n — oo) to the asymptotic probabilities py, ps, pe,
p7, respectively.

We have avoided in this Section any of the technical proofs on which our
general assertions should rely. The reader who feels the need for more rigor
should consult classical treatises on Markov chains, e.g. those mentioned at
the beginning of the Section.

D1 =

EXERCISE 1.13.1 Study the Markov chains having transition probabilities
given by the following matrices:

01 0 0 05 1 05 0
1o/ \1 1) 05 0/ \05 1)

04 03 0.2 0.2 03 0.2
0.6 0.7 08 |, 0.8 0.7 0.8
0O 0 0 0O 0 0 O

1.14 General results

Consider a well-graded knowledge space (@, K), and a wunitary stochastic as-
sessment process (X,,) = (Ry, Qn, K,,, M,,) parametrized by u, 7, 7, 3,, and
v, on (@, K) (as in Definition 1.12.1 and Remark 1.12.1). For all this Section
except Theorem 1.14.2, we also assume that 7 has unit support, say {Ko}.
Thus, the student’s knowledge state is stochastically certain: it is equal to K
with probability 1. Nevertheless, answers provided by the student to the test-
ing procedure could accidentally reflect another knowledge state. Moreover,
answers to the question ¢ are biased, due to careless errors or lucky guesses;
recall that our parameters (3, and v, account for these perturbations.
The proofs of the first three theorems are easy, and left as exercises.
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THEOREM 1.14.1 For the unitary stochastic assessment process (X,,) hav-
ing By =y, =0 (straight case) and unit support {Ky}, one has for n >0

Pr(Ky € M1 | Ko € M,,) = 1.

Thus, the set of all subfamilies of K containing Ky is a closed set for the
Markov chain (M,,). 0

THEOREM 1.14.2 For the unitary stochastic assessment process (X,,), we
have for n > 0:

Pr([ M| < M| |[M,| > 1) = 1,

and
(1.8) Pr(|M, 1| =1/|M,|=1) = 1.
Hence there exists some positive integer m such that, for n > m:

Pr(|M,| = 1) = 1. 0

In the fair case (no lucky guess, that is v, = 0 for each question ¢), we can
improve Equation (1.8). This requires a careful analysis of all possible cases
when M, consists of a single knowledge state. Remember that F/(K) denotes
the fringe of the knowledge state K (cf. Definition 1.7.2). (We will use JF to
denote the union of the family F of knowledge states.)

THEOREM 1.14.3 Let (X,,) be a fair, unitary stochastic assessment process
having unit support {Ky}, and K be a knowledge state. Setting

c=|FEO\N(KUK)I+ > B+ > (1=8)

q€(F(K)NKo)\K qEF(K)NKoNK

the transition probabilities from the Markov state {K} are given as:

Pr(Mn+1 = {K/} | M, = {K}> =

(1=08)/(IF(K)]) if K'=KU{q},q € (F(K)NKo)\ K;
1/|F(K)| if K'=K\{q},q € (F(K)NK) \ Ko;
B/ | F(K)| if K'= K\ {q},q € F(K)N KN Ko;
¢/|F(K)| if K =K'

0 otherwise.

In particular, one has for any knowledge state K with K € Ky,
Pr(M,;; = {K} | M, = {Ky}) = 0. =

From the last proposition, a nice convergence feature is derived for our
assessment process in the straight case (7, = f, = 0). For any step n after
one on which |[M,| = 1, the distance to Ky from the single knowledge state
remaining in M,, does not increase any more (of course, we mean that this holds
with probability 1). Recall from Section 1.7 (paragraph before Example 1.7.3),
that the distance from K to Kj is defined as d(K, Ky) = |K A K.
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THEOREM 1.14.4  For the unitary stochastic assessment process (X,,) hav-
ing By = v, =0 (straight case) and unit support { Ky},
lim Pr(M,, = {Ky}) =1.
Moreover, for any state K satisfying d(K, Ky) = j > 0, and any positive

integers m, n,

k-1 :
k=0
where \ defined as
B . (K AK')YNF(K)|
A= KKER KA |F(K)|

15 strictly positive. O

PROOF. First notice that A > 0 amounts to well-gradedness, by Propo-
sition 1.7.2(1). We next turn to Equation (1.9). Let n < ¢ < n + m and
M; = {L} (remember Equation (1.8)). The question Q; = ¢ is then chosen
in F(L). If g € (LA Ky) N F(L), the new marker M; ; = {L'} will be ‘closer’
to {Ko}, more precisely d(L', Ky) = d(L, Ky) — 1 (this is to be understood
with probability 1, and follows from the straightness assumption). If on the
contrary ¢ € F(L) \ (L A Ky), one has d(L', Ky) = d(L, Ky) because L' = L
(with probability 1). Thus, at each step i, we either decrease by 1 the distance
to {Ky}, or leave it unchanged. The probability of a decrease is equal to

(LA Ko) N F(L)]

|F(L)]
Thus the probability in (1.9) is equal to the probability that a number of at
least j decreases occur among steps n, n+1, ..., n+m — 1. At each step, the

probability of a decrease is bounded from below by A. It can then be shown
that the probability in (1.9) is bounded from below by the probability of the
following event, in the setting of a sequence of Bernoulli trials having outcomes
either ‘success’ with probability A, or ‘failure’” with probability 1 — A:
A = {the number of trials required to observe j successes is
less or equal to m}.
The event A decomposes into the following mutually exclusive events, with
k=0,1,...,m—7:
A, = { the number of trials required to observe j successes is
equal to j + k}.
Since
Pr(4y) = ( e ) N1 = AN,
Equation (1.9) follows. To derive the first assertion in the statement, it is

sufficient to prove that the right side of Equation (1.9) converges to 1 for
m — oo (which is obvious from its meaning as the probability of A). [ |
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THEOREM 1.14.5 For the unitary stochastic assessment process (X,,) hav-
ing v, = 0 (fair case) and unit support {Ko}, the Markov chain (M,,) has
a unique ergodic set E. This set E can contain only Markov states of the
form {K}, with K C Ky, and necessarily contains {Ky}. If one assumes
moreover 3, > 0 for all questions q in Ky, then E is exactly the family of all
Markov states {K}, with K C K. 0

ProoF. By Theorem 1.14.2, an ergodic Markov state contains only one
knowledge state. It is easy to check that { Ky} can be reached from any {K},
with K € K (use well-gradedness together with Theorem 1.14.3). The asser-

tions follow easily. [}
EXERCISE 1.14.1 Give a proof of Theorem 1.14.1. a
EXERCISE 1.14.2 Give a proof of Theorem 1.14.2. a
EXERCISE 1.14.3 Give a proof of Theorem 1.14.3. O

1.15 Some other examples

A strong assumption in the previous Section was that of a unit support. Un-
fortunately, results about convergence appear much more difficult to establish
in the general case. We will restrict ourselves to the analysis of some examples.
Interestingly enough, it will be possible in some situations to estimate the ex-
aminee’s distribution just from the observed frequencies of the marker’s states.
However, a final example will illustrate the impossibility of such a derivation
in general.

We use the same notations as in the previous Section, and assume that the
stochastic assessment process is fair (7, = 0) and unitary. By Theorem 1.14.2,
the Markov states of the chain (M,,) that contain more than one knowledge
state are transient. Moreover, if K is a knowledge state in the support of 7
(that is, 7(K) > 0), then { K} is an ergodic Markov state of (M,,). As a matter
of fact, the same holds for any knowledge state K satisfying K’ C K C K" for
some knowledge states K’ and K" having m(K’) > 0 and 7(K"”) > 0. More can
be said using the subset Q" of questions that belong to at least one knowledge
state from the support.

NoTATION 1.15.1 Set
QT =K € K|n(K) > 0}.

(In the right-hand side, we have the intersection of a subfamily of knowledge
states.) O

If B, > 0 for each question ¢ in Q% (i.e. the probability of a careless
error is positive for each question in @), then any Markov state { K} with K
included in some knowledge state from the support is ergodic. Let us look at
the opposite case, that is the straight case.
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ExAMPLE 1.15.1 Take @ = {a,b,¢,d, e} and K to be the chain of knowl-
edge states

0, {a}, {a,b}, {a,b,c}, {a,b,c,d}, Q.
If 3, =0 for all ¢ in Q*, the only ergodic Markov states { K} will be obtained
for K comprised between two knowledge states from the support (this can be
checked directly, or derived from next Theorem 1.15.1). We further particular-
ize our example, still assuming straightness, and let the support of 7 consists
of the subchain of knowledge states

{a,b},{a,b,c}, and {a,b,c,d}.

Consequently, there are exactly three ergodic Markov states, namely { K’} with
K one of the three knowledge states in this subchain. The information we want
to uncover amounts to the following three numbers:

o= 7T({a’ b})7
m = w({a,b,c}),
w3 = w({a,b,c,d}).
The chain (M,,) has 25 — 1 = 63 possible Markov states. Let us stick to the six

Markov states { K }, with K € K, which altogether form a closed set. The direct
reachability relation D, restricted to this closed set, is given in Figure 1.10.

Figure 1.10. The direct reachability relation D on six of the Markov states of
Example 1.15.1.

The unique ergodic set {{a, b}, {a,b,c},{a,b,c,d}} asymptotically captures
the chain. The transition probabilities within this set are displayed in the
matrix of Table 1.4.

One can compute the unique stationary probability distribution (p1, p2, ps)
as indicated in Section 1.13. Let us rather extract the unknown quantities
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m, T, w3 from the p;. By stationarity:

#Zﬁ + %Zh = D

1
%m + +27T3P3 = D3,

from which we derive, using m + my + 73 = 1:

_ b1
™ = pr+py
Ty = (p2)2 — DPiP3
(p1 +p2)(p2 + p3)’
T3 = P3 .
P2+ p3

Thus, observing a ‘large’ number of steps from the Markov chain (M,,) shows
the presence of three ergodic Markov states {a, b}, {a,b,c}, and {a,b, ¢, d} to-
gether with their actual frequencies that approximate py, ps, and ps. Through
the above formulae, one then derives estimates of w1, my, m3. This example
clearly shows how horizontal averaging may be useful for uncovering the un-
known distribution. O

Of course, the method illustrated in Example 1.15.1 will require testing
repeatedly a series of notions (a large stock of equivalent questions will be
required). This is a drawback, due to the variation along time of the student’s
knowledge state; however, see Section 1.17 on computer simulations.

The assessment process we just described was based on a chain of knowledge
states. Let us now take our favorite small example (pictured in Figure 1.6),
which is well graded without being a chain.

ExAaMPLE 1.15.2 Take

Ks = {0,{b},{c}.{a,c},{b,c},{b,d},{a,b,c} {a,c, d},
{b,c,d},{a,b,c,d},{a,b,c e}, Q}.
We again assume that the stochastic assessment process is unitary. The Markov
states of the form { K}, for all K in 3, constitute a closed set. Notice that all
Markov states { K’} directly reachable from the Markov state { K'} must satisfy
d(K,K') < 1. A better control of the direct reachability relation D requires
further assumptions. For instance, consider the straight case (6, = v, = 0),

Table 1.4. The matrix of transition probabilities between the ergodic Markov states
in Example 1.15.1; rows and columns are indexed by {a,b}, {a,b,c}, {a,b,c,d} in
that order.

1+7T1 1 0
2 2
mo+m3 l4m9 m + 7
2 2 2
3
2

14+ 73
0 -
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and take the distribution 7 to be concentrated on only two knowledge states,
say {a,c} and {b,c}. We thus have for some real number a:

7({a,c}) = a>0,
7({b,c}) = 1—a>0.

The resulting relation D on the set of Markov states { K'} is given in Figure 1.11.
A unique ergodic set appears that collects four Markov states {K}, with K

Figure 1.11. The direct reachability relation discussed in Example 1.15.2; the six
ergodic Markov states are outlined.

equal to one of
{c}, AHa,c}, {b,c}, {a,b,c}. 0

In fact, this is a particular instance of the following result. (The set most
to the left in Equation (1.10) is nothing else than @™, see Notation 1.15.1 and
Exercise 1.15.1.)

THEOREM 1.15.1 For a unitary, straight assessment process on the knowl-
edge space (Q,K) with parameter w, there is only one ergodic set of Markov
states. It consists of all {K}, with K in K satisfying

(1.10) ({LeKIn(L) >0} C K C|J{LeKIn(L)> 0} O

PROOF. Let us call J the set most to the right in Equation (1.10) and prove
that {J} is reachable from any Markov state { K'} (where K € K; notice J € K
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because K is a space). By well-gradedness, and referring to the fringe F'(K) of
K (see Definition 1.7.2 and Proposition 1.7.2(i)), we can pick a question ¢ in
(JAK)NF(K). If M,, = {K}, there is a positive probability that question
g will be asked. Now if ¢ € J (resp. ¢ ¢ J), the answer will be correct (resp.
incorrect) with a positive probability; hence the knowledge state K'U{q} (resp.
K\{q}) is directly reachable from K. In both situations, we have come closer to
J (with respect to the symmetric difference distance). Repeating this argument
with the new knowledge state, and again, shows that J is reachable from any
Markov state {K}. There follows at once the uniqueness of the ergodic set,
say E. More precisely, E consists of all Markov states { K} reachable from
{J}.

The first inclusion in Equation (1.10) is obviously necessary for {K} to
be reachable from {J}. To establish now its sufficiency, remember that well-
gradedness implies the existence of a chain of knowledge states from K to J,
growing by one question at a time (see Definition 1.7.1). And notice that the
probability of an uncorrect answer to any question in J\ N{L € K= (L) > 0}
is positive. [ |

We return to our example, for which the unique ergodic set consists of four
Markov states.

EXAMPLE 1.15.3 (following Example 1.15.2) After a sufficient number of
steps, the examiner will detect the ergodic set, with the relative frequencies of
its states. Let us denote these as

p for  {c},
pe  for {a,c},
ps  for {b,c},
py for {a,b,c}.
The discovery of the ergodic set reveals that each knowledge state K distinct

from the four above has m(K) = 0 (using Theorem 1.15.1). Thus the observer
is left with four unknown parameters, namely

m = w({c}),

m = 7({a,c}),

w3 = 7({b,c}),

my = 7w({a,b,c}),
which govern the transition probabilities within the ergodic set. Figures 1.12
and 1.13 give a self-explaining sketch of the computations, and Table 1.5 the
derived values of the transition probabilities. One can compute the theoretical
values of the stationary distribution, and show that the 7;’s can be derived

from these. Thus the observer can infer estimates for 7 from estimates from p,
the latter being obtained from observing the process. He will thus uncover the
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4 1 — {ac}
a <
0 —— {c
1/3 3
4 -
1/3 < 1 {b,c}
{c} b
0 —— {c}
1/3 ?
1 1 —— A{c}
C <
0 0

4 1 — {ac}
a
< o —
1/3
1 — {abc}
1/3
b
{a,c} < 0 g
1/3 0 .
d
< 0 — fag

Figure 1.12. The first two diagrams for the computation of the transition proba-
bilities in Example 1.15.3.

true values of 7 that we assumed from the start, namely

m = 7({c}) 0,

T = n({a,c}) = a>0,

w3 = 7w({bc}) = 1—a>0,

my, = w({a,b,c}) 0. O

It should not be concluded from Example 1.15.3 that our model makes all
distributions 7 uncoverable. Take the following simple example (first described
by Mike Landy).

Table 1.5. Transition probabilities in the ergodic set of Example 1.15.3; rows and
columns are indexed by {c}, {a,c}, {b,c}, and {a,b, c} in that order.

1427w +mo+73 T1+73 T +72 0
3 3 4
To+T4 1+ +2m0+m4 0 T1+72
3 3 4
m3+my 0 24m+273 474 T1+m3
3 4 4

0 m3+m4 To+my 2+mo+mw3+2my
3 4 4
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a
T 0 —  {bc}
T +n
va/ b{ 1 ——  {bc}
m M 0 —— {c}
b.c 12
{b.c} 1/4
c
1/4 0 0
0 1
d<
1 0 ——  {bc}
m4+n
a
ﬂl+ﬂ3 0 — {b,c}
m+n
VY b{ .
m+n 0 —— {ac}
{ab,c} L2
1/4
0 1
d<
1/4 1 0 —— {abg}
0 1
e<
1 0 —— {ab,c}

Figure 1.13. The two last diagrams for the computation of the transition proba-
bilities in Example 1.15.3.

ExXAMPLE 1.15.4 On the knowledge space
Q: {a7 b7c7d}7 IC:QQ?

define two different distributions m; and m through

7'('1({0,, b}) = 0.5, 7.‘-2({67 C}) = 0.5,

m({c,d}) = 0.5, mo({d,a}) = 0.5.
In the straight case, it is easily checked that the probabilities of correct answers
to each question from () coincide for students characterized by the distributions
m and 7y, respectively. Hence, our unitary, straight stochastic assessment

process cannot successfully ascribe the probabilistic knowledge in this example:
it cannot discriminate between these two students. O
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Let us take a second look at the phenomenon exhibited in Example 1.15.4.
The student’s answers (what we observe) are governed by the correctness prob-
abilities, which means a number of parameters equal to the number of ques-
tions. On the other hand, the student’s distribution (what we want to uncover)
has as many parameters as the number of knowledge states. It is intuitively
clear that for a number of questions less than the number of knowledge states,
not all distributions 7 can be uncovered. Falmagne and Doignon (1988b) anal-
yses the situation in terms of the rank of some matrix, and characterizes the
cases in which any distribution is uncoverable. We guess that in practice the
support of 7 is rather small, hence that in most cases 7 will be correctly esti-
mated from observing one (or more) realization of our process.

This chapter provides a mathematical analysis of a Markovian process for
knowledge assessment. Typical of the definition of such Markovian processes is
the fact that they forget the past —in our case, only the information contained
in the actual marker M, is retained. In practice, however, the assesser may
try to incorporate in his algorithm (part of) the information from previous
steps. For instance, as soon as the marker contains only one knowledge state,
he would record the relative frequencies of the knowledge states that are met
along time. From Section 1.13, we know that these relative frequencies will
converge to the probabilities of the Markov states of an ergodic set, and from
this Section that the asymptotics may give access to the distribution of the
student’s knowledge state.

EXERCISE 1.15.1 Prove the equality QT = {q € Q | 7(K,;) > 0}, where
m(Ky) = ZKG/Cq m(K). 0

1.16 Another model for probabilistic assessment

Another model of probabilistic assessment was described by Falmagne and
Doignon (1988a). Based on a continuous stochastic process (taking its values
in an infinite compact set, and again discrete in time), it was conceived chrono-
logically before the Markov chain model on which this chapter centers. The
role of the marker is replaced by a numerical likelihood for each knowledge
state.

We will not go into details here, but just illustrate how the information
evoluates over time. Consider again the knowledge space (@, 3). In Fig-
ure 1.14, the likelihoods of the various knowledge states are rendered by the
areas of the dark rectangles. At the start, all knowledge states have the same
plausibility.

After asking a question and checking the correctness of the answer, the
likelihoods are consequently updated. Precise formulas for computing the new
values are proposed by Falmagne and Doignon (1988a). The main result of the
paper shows, in the unit support case, that the likelihoods will converge to the
distribution 7 that is to be uncovered.
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Figure 1.14. Tllustration of the model in Section 1.16.

FOR FURTHER REFLECTION 1.16.1 List some properties you would like
to specify on the way likelihoods are transformed (depending on the question
asked and the validity of the answer). Then devise formulas satisfying your
requirements. Compare your formulas with those of Falmagne and Doignon
(1988a). O

1.17 Computer simulations

Both the unitary process model from Definition 1.12.1 and the stochastic model
from Section 1.16 have been simulated on computers. They will be referred to
as the discrete (D) and the continuous (C) models. In a first study (Villano,
Falmagne, Johannesen, & Doignon, 1987), a set ) of 21 questions in high-school
mathematics has been used. Information about dependencies among questions
was obtained from an expert. Thus a surmise relation (Definition 1.3.1) was
formed, and then the associated knowledge space (Q, K) was constructed (Def-
inition 1.4.1 and Theorem 1.4.1). It happened that among all the 22! subsets
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of @, only 302 belonged to the space K.

A first simulation of assessment was done in the straight case (no careless
error, no lucky guess). Let us summarize it by giving the average numbers
of questions asked before obtaining a single knowledge state that belongs to
the marker (D) or amasses the highest likelihood (C). As in the other simula-
tions we will mention, 1,000 trials were performed for each of three student’s
states of knowledge containing respectively 5, 11 and 15 questions. The results
are given in Table 1.6. It must be recalled that the knowledge space was on

Table 1.6. Average number of questions before isolating a single knowledge state.

Model D C
Student mastering 5 questions | 8.498 | 9.000
Student mastering 11 questions | 8.122 | 8.000
Student mastering 15 questions | 8.234 | 9.000

21 questions; thus the assessment procedure needs to ask only a small fraction
of the questions to isolate the correct knowledge state.

Other simulations were done in case the probabilities of lucky guesses and
careless errors are positive. We just report here about the situation in the
fair case (no lucky guess), after 12 answers collected. Table 1.7 shows the
symmetric difference distance (in the average) between the correct state of
knowledge and the knowledge state remaining in the marker (D) or having
highest likelihood (C). (In the continuous case, if more than one knowledge
state has highest likelihood, the average distance was used.) The lucky guess
parameter (3, was set to a constant value 3 in each of three simulations, namely
G =0.05, 8 =0.10, and § = 0.20. These results show that after only about

Table 1.7. Average distance between the correct knowledge state and the remaining
knowledge state.

Model D C D C D C
B 0.05 | 0.05 | 0.10 0.10 | 0.20 | 0.20
5q.|0.126 | 0.122 | 0.288 | 0. 238 | 0.568 | 0.558
11 q. | 0.312 | 0.224 | 0.664 | 0.428 | 1.410 | 1.140
15 q. | 0.664 | 0.221 | 1.270 | 0.533 | 2.710 | 1.730

half of all the questions are asked, both processes give quite reliable results.
A deeper study of the continuous model is to be found in Villano (1991).
This work relies on the huge data set consisting of the answers of 80,722 stu-
dents to the New York test on high-school mathematics. It first addresses the
problem of the comparison of knowledge spaces built from five different experts
or from empirical data. Then the reliability of these spaces for the assessment
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process is investigated through various simulations. After a few answers have
been collected from a ‘student’, the model can predict his or her answers to
remaining questions. It turns out that the correctness of these predictions are
rather high. We will not give more details because this would require a more
detailed exposition of the continuous model.

1.18 Conclusions

The aim of this chapter was to expose a theory of knowledge assessment.
As was said in the Introduction (Section 1.1), interactive, computer-assisted
courses should embody a module for assessing efficiently the actual knowledge
of the trainee. In order to design the required software, a theoretical model was
first needed. This meant not only a descriptive setting, but also the framing
of assessment processes taking into account the inherent noise in the answers
collected from the student.

First, the fairly general notion of a knowledge structure is defined in set-
theoretic terms. A more constraining definition quickly appears to be nec-
essary. On the basis of a mathematical link with the AND/OR graphs of
artificial intelligence (recast here as surmise systems), knowledge spaces are
introduced. Well-gradedness captures an interesting feature of a subclass of
knowledge spaces. Pursuing along the deterministic point of view, we have
described processes for knowledge assessment in the form of binary decision
trees.

A major change in the framework is required to leave room for possible
inconsistencies in the student’s answers: probabilistic notions enter the pic-
tures. Thus, a Markov chain model is devised (the reader may be aware of the
use of Markov chains in learning theory). It allows a mathematical study of
convergence, and also computer-simulations.

We think that all this preliminary theoretical work (pertaining to combina-
torics, probability theory, and computer science) was necessary before starting
the development of a well-founded software. Some other aspects have not been
touched upon in this expository chapter. There are statistical issues, related to
how our model should be tested on data; see Falmagne (1989a). The problem
of building a particular knowledge space from data consisting in answers from
a population of students to a test was also considered elsewhere (Villano, 1991;
and Theuns, 1992). Another approach is to extract the relevant information
from experts in the field. It led to more combinatorial investigations (Kop-
pen & Doignon, 1990; Koppen, in press; and independently, Miiller, 1989).
The resulting algorithm minimizes the number of queries to the expert. It was
used in a real-life application (Kambouri, 1991; see also Kambouri, Koppen,
Villano, & Falmagne, 1991, or Villano, 1991): five experts were queried about
the knowledge assessed by the New York test in high-school mathematics. In
that way, five knowledge spaces on the same 50 questions were built. (Studies
have been undertaken on how to aggregate the resulting spaces.) Remarkably
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enough, among the huge number of subsets (in this case, 2°°, that is a 15 digit
number), the algorithm retained only a few thousands as possible knowledge
states. Indeed, the figures vary with the experts, but do not exceed 3,903 for
four of them. Although the fifth expert did not complete the task, only 7,932
subsets were remaining when she left. More recent works aim at constructing
not only knowledge states, but also estimators for their probabilities, or for the
probabilities of learning paths (Falmagne, 1989a; Falmagne, 1992; Falmagne,
in press).

The final goal of the project, that is a general software for assessment
routines based on our models, is not yet reached; we have mentioned in Sec-
tion 1.17 that preliminary versions were used for computer simulations. Let us
now propose some general reflections about the theoretical, preliminary steps
of our work.

A question that could have bothered our readers abruptly formulates: why
do we use such a mathematical machinery for investigating a psychological
topic? The answer is multiple. First, we need to make precise statements, not
only to ease communication, but also to put forth assertions whose correctness
can be precisely evaluated (either by formal arguments, or by experiments,
computer simulations, ...). As Henri Poincaré once said,

Mathematics is a language in which one cannot express imprecise
or nebulous thoughts.

Second, mathematical proofs are surely more convincing than vague arguments
(at least for the kind of affirmation that we make, e.g. about the convergence
of a process).

Third, the models of knowledge representation and assessment we intro-
duced are testable, either in the sense of a scientific theory, or in a more narrow,
technical sense: statistical techniques apply to obtain a measure of confidence
of a particular knowledge space. Finally, and once again, these models allow
an easy and faithful computer implementation.

A future investigation in the follow up of our project will be to compare
the efficiency of our processes with the way human examiners act. We hope
to benefit on both sides from this comparison: by incorporating teachers’ atti-
tudes and tricks in our software, and by getting a deeper understanding of the
way teachers assess the knowledge of their students.
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2.1 Introduction

In schools and universities, student knowledge in some fields is often assessed
by presenting the same small set of questions to each student in the class. A
student’s performance is then evaluated by assigning a score or grade. This
procedure is too crude for the assessment of knowledge as required by a system
for computer assisted instruction. Such a system needs information on which
topics still have to be taught to an individual student, and which subjects
can be omitted. Students may otherwise become either frustrated or bored.
Doignon and Falmagne (1985) therefore suggest combining instructional sys-
tems with a procedure for the assessment of knowledge which models an oral
examination, where the teacher’s questioning strategy depends upon the stu-
dent’s answers to previous questions. Using such a questioning procedure the
teacher will be able to diagnose a student’s knowledge, often after having posed
only a few questions to the student.

To create a computer aided assessment procedure modeling a teacher’s way
of selecting questions in an oral examination, we need a large pool of differen-
tiated questions from the field of knowledge to be examined. To an individual
student, we will, however, pose only a few, but highly pertinent questions.
Those questions a student is not asked during the assessment procedure are
successively to be determined on the basis of the student’s answers to previous
questions.

The information concerning which of the questions are to be omitted during
the assessment procedure may be derived from an expert’s judgments. (The
expert may, for example, be a teacher experienced in the relevant field of
knowledge.) The expert’s judgments are so that statements of the following
form are selected: “if a student does not master all questions of this given
subset of questions, then it can be assumed that he or she does also not master
this specific question.”

In some applications we work with a set of skills rather than with a set of
examination questions. The following example refers to one of these applica-
tions. It is designed to demonstrate the nature of the teachers’ judgments, and
will be referred to repeatedly in this chapter for other illustrations.
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EXAMPLE 2.1.1 In a continuing project a particularly well trained and
experienced teacher named 48 skills that she considered to be important for
the diagnosis and training of elementary reading and writing abilities. For
simplicity, we only list the following four skills (a) to (d), namely,

(a) being able to pick out a printed character from a collection of similar
characters,

(b) being able to write optically similar letters correctly,

(c) being able to identify similarly sounding initial phonemes,

(d) being able to write characters corresponding to similar phonemes cor-
rectly.

Another experienced teacher chose the following two statements on the four
skills a, b, ¢, and d as being correct.

(1) If a pupil cannot master skill (a), then she or he cannot master skill (b).
(2) If a pupil cannot master the skills (b) and (c), then she or he cannot
master skill (d).

The figure 2.1 below illustrates these two judgments. The “and” in figure 2.1
corresponds to “... (b) and (c)...” in statement (2). O

Q

\b c
i
d

Figure 2.1. Graph illustrating the judgments from example 2.1.1

The expert’s task of selecting the appropriate statements is not a trivial
matter whenever the collection of questions is large. A major problem that
could affect the consistency and the validity of the expert’s judgments is the
exponentially large number of possible judgments. For example, if only 50
questions are considered, then we have approximately 2.8 - 10'® statements!
There are, however, procedures available facilitating the expert’s judgments
(Dowling, in press; Koppen, in press; Koppen & Doignon, 1990; Miiller, 1989).
One of the ideas upon which such a procedure is based is to omit judgments on
statements which can be inferred from previous judgments. An introduction
to such a procedure will be given in the last section of this chapter. Such pro-
cedures do, of course, avoid iterating through the set of all possible statements.

An expert’s judgments as described above can be considered as knowledge
about students’ knowledge, briefly called meta-knowledge from now on. In the
following sections, we will introduce various formal structures for the repre-
sentation of meta-knowledge, and we will investigate the relationship between
these structures. We will compare structures differing in their psychological
interpretation by proving their formal equivalence. For example, we will show
in section 2.5 that a collection of an expert’s judgments and those judgments



2 2 Combinatorial structures for the representation of knowledge 59

which follow from the expert’s judgments is equivalent to a specific collection
of knowledge states. A knowledge state is defined by Doignon and Falmagne
(1985) as a subset of questions a student is capable of solving.

By considering different but formally equivalent structures for the repre-
sentation of meta-knowledge, we are able to choose that structure from a set of
equivalent structures, which is most suitable for the use of algorithms required
by an application. One of these structures introduced in the section 2.4 will
turn out to be a useful basis for applying algorithms to assess students’ knowl-
edge. These assessment procedures are developed by Falmagne and Doignon
(1988a, 1988b), and by Degreef, Doignon, Ducamp and Falmagne (1986). A
survey of some of the probabilistic algorithms for the assessment of student’s
knowledge is presented in Jean-Paul Doignon’s chapter in this volume.

2.2 Representing judgments with a relation

Let V be a fixed and finite set, and let py, --- ,pr,q¢ € V. In our application,
V represents a collection of questions or skills from some knowledge domain.
We assume that an expert has selected a set of statements each of which has
the form

(2.1if p; and --- and py are not mastered, then assume ¢ to be unknown.

In this section, we will represent a set of such statements as a relation. This
kind of representation will, on the one hand turn out to be straight forward, and
on the other, enable us to establish a connection with less obvious structures
for the representation of meta-knowledge in the section 2.5.

DEFINITION 2.2.1 The Cartesian product X x Y of two sets X and Y is
the set of all ordered pairs (x,y) with x € X andy € Y. A subset RC X xY
is called a binary relation on X to Y. Then (x,y) € R is also written as xRy,
and is read: “x stands in relation R to y”. O

EXAMPLE 2.2.1 Let X = {a,b,c} and Y = {d, e}. The Cartesian product
of X and Y is

X xY ={(a,d),(a,e), (b,d), (b €), (c,d), (c,e)}.
Examples of binary relations on X to Y are:

R ={(a,d), (a,e), (b,d), (c,e)}, R=0, and R=XxY. 0

With the following definition we introduce the specific binary relation which
shall be used to represent a set of statements of the form (2.1).

DEFINITION 2.2.2 Let V be a set. The set of all subsets of the set V is
written as 2. The set of all subsets of V' without the family {0} containing
only the empty set is denoted by 2V \ . A binary relation on 2" \ ) to V is
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called an implication relation on V. For P € 2V \ (), for ¢ € V, and for an
implication relation,

IC(2"\0)xV,
(P, q) € I is also written as PIq, and is read: “P implies ¢”. O

We have introduced an implication relation I C (2¥ \ 0) x V with the
following interpretation for the notation PIq: The question ¢ can be assumed
to be unknown whenever all the questions in P are not mastered. Thus, we can
identify each statement of the form (2.1) with a member (P, g) of the Cartesian
product (2" \ 0) x V, and each subset of such statements as an implication
relation. For a member (P, q) € I we call the set P the premise and the element
q the consequence.

ExAMPLE 2.2.2 Let V = {a,b,c,d} be the set of questions from our in-
troductory example 2.1.1. The expert’s judgments (1) and (2) of this example
can be represented as the implication relation

I'={({a}, b), ({b,c}, d)}. O
The members of the implication relation T on V' defined by setting
(2.2) PTq if and only if ¢ € P

are called tautologies. For the set V' from example 2.2.2 the statements ({a, b, ¢, }, a)
and ({b,d},d) are examples of tautologies. It is, of course, not necessary to
ask an expert for his judgments on the members of the relation T since these
statements must be assumed to be correct.

EXERCISE 2.2.1 Give the smallest and the largest implication relation I C
2"\ 0) x V. O

EXERCISE 2.2.2 Doignon and Falmagne (1985) have introduced a “sur-
mise” relation S C V x V| with the following interpretation for the notation
pSq: on observing a correct response to the question ¢, it can be surmised that
a correct response would also be given to the question p. What is the relation-
ship between a surmise relation S on a set V' of questions and an implication
relation on V7 O

2.3 Representing of judgments by knowledge and fail-
ure spaces

In the introduction, we mentioned that algorithms for assessing students’
knowledge in a specified field have been developed by Falmagne and Doignon
(1988a, 1988b). These algorithms operate on a collection of “knowledge states”.
Doignon and Falmagne (1985) define a student’s knowledge state as the subset
of questions the student is capable of solving. In this section, we describe that
collection of knowledge states which is compatible with an expert’s judgments
encoded as an implication relation.
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DEFINITION 2.3.1 Let 2V be the set of all subsets of a set V, and let F
be a family of subsets of V, i.e., F C 2V and let I C (2" \ 0) x V be an
implication relation on V. A subset X of V is called a failure state if and
only if the following condition (2.3) is fulfilled for X:

(2.3) for all (P,q) €I, if P C X, then ¢ € X.

The family of all failure states is called the failure space F; derived from I. O

EXAMPLE 2.3.1 Let V = {a,b,c,d} be the set of questions from the intro-
ductory example 2.1.1, and let

I'={({a}, b), ({b,c}, d)}

be the implication relation from example 2.2.2 representing the statements (1)
and (2) of the introductory example 2.1.1. Using the definition 2.3.1 we obtain
the failure space derived from I,

Fr ={0,{b},{c},{d},{a,b}, {b,d},{c,d},{a,b,d},{b,c,d},{a,b, c, d}}.
For all members X € F; the condition (2.3) is fulfilled. Examples for which
the condition (2.3) does not hold are the set {a, ¢,d}, since P = {a} C {a,c,d}
and ¢ = b ¢ {a,c,d}, the set {a,b,c}, since P = {b,c} C {a,b,c} and ¢ =
d & {a,b,c}, and the set {a,c}, since P = {a} C {a,c} and ¢ = b & {a,c}.
Condition (2.3) is, of course, not fulfilled for the set X = {a} or the set
X = {b,c}. O

By condition (2.3), a failure state can be determined as a subset of V'
which, for all (P, q) € I, contains the inference ¢ whenever the premise P is a
subset of X. In our application a failure state can therefore be interpreted as a
subset of incorrectly answered questions, which is compatible with the expert’s
statements encoded as an implication relation.

The next definition introduces two concepts which will be used frequently
in the remainder of this chapter.

DEFINITION 2.3.2 Let V be a set and let S be a family of subsets of V
so that {Xy, ..., X;, ..., X,,} = S. The intersection of the members of S is
written as S, the union of the members of S is written as JS. The sets NS
and J S are defined as

NS=Xn--NX;N---NX,and JS=X,U---UX;U--- UX,

A family F C 2V is called closed under intersection, if, for all subsets S C F,
the intersection NS € F. Correspondingly, a family F C 2V is called closed
under union, if |JS € F for all subsets § C F. O

PROPOSITION 2.3.1 The failure space, Fr, derived from an implication re-
lation I C (2Y'\ 0) x V, is closed under intersection. The empty set and the
total set V' are elements of Fy. O
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PROOF. Suppose (P,q) € I, and let Fipyy ={X CV | PZ X} U{X C
V| ¢ € X}. With the definition of a failure space,

Fr={NFea | (Pa) €I}
We prove that F(pg) is closed under intersection. Suppose & C Fpgy. If
P & X for some X € §, then P £ NS, and NS € Fpy. Hence, suppose
P C X for all X € §. From the definition of Fpg), we have ¢ € X whenever
P C X;ie, qe NS, and hence NS € Fpgy. Since all families Fp,) are
closed under intersection, the family 7 is also closed under intersection. Since
P # 0, it follows that ) € F(pg); and since ¢ € V, one obtains V' € Fp, for
all (P,q) € 1. ]

Since a failure space F7 is closed under intersection, we can assign to each
subset Y of the set V' the smallest member Y* of F; containing Y by the
following equation:

(2.4) Y =(\{XeF|YCX}

The proposition 2.3.1 can be applied to assess students’ knowledge by as-
signing to any student, who has answered a subset Y of the set V' of questions
incorrectly, the temporary failure state Y*. The student’s temporary failure
state Y* contains the questions in Y, which the student has answered incor-
rectly, together with those that are implied by the statements represented by
the implication relation /. If the student answers all questions in V' \ Y'* cor-
rectly, then the temporary failure state becomes the student’s final state. If
some questions in V' \ Y* are answered incorrectly, then the student’s final
failure state is some subset Z°® of V' with the property

YCY*CZ*andY CZ

for Z* = N{X € F; | Z C X}. In this manner the temporary failure state
of a student can be regarded as a minimal set of questions the student is
incapable of solving. A student’s final failure state can be interpreted as the
set of questions the student is incapable of solving. For a final failure state
Y C V we can interpret the set complement Y = V' \ 'Y as the set of questions
a student is capable of solving, that is, as a knowledge state in the sense of
Doignon and Falmagne (1985).

Since the failure space Fj is closed under intersection by proposition 2.3.1,
it follows that the family of the complements Y = V \ Y of the members Y of
a failure space is closed under union.

DEFINITION 2.3.3 A family K of subsets of a set V', which contains the
empty set and the set V, and is closed under union, is called a knowledge
space. For an implication relation I, a failure space F;, and X = V' \ X the
set

IC]:{X|X€.7:[}

is called the knowledge space derived from the relation I. O
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ExXAMPLE 2.3.2 Let F; be the failure space derived from the implication
relation I = {({a}, b), ({b,c}, d)} in example 2.3.1. The knowledge space
K1 is the set of the complements of the members of the failure space F,

Fr ={0,{b},{c},{d},{a, b}, {b,d},{c,d},{a,b,d},{b,c,d},{a,b,c,d}},
Kr={{a,b,c,d},{a,c,d},{a,b,d},{a,b,c}, {c,d}, {a,c}, {a,b},{c}, {a}, 0}

O

We have introduced the concept of a failure space derived from an implica-
tion relation before the concept of a knowledge space since we assume that
condition (2.3) can be understood more immediate than a condition defining a
knowledge space derived from an implication relation directly. Such a condition
is formulated as follows:

PROPOSITION 2.3.2 Let I be an implication relation on V', and let Y be
a subset of 'V which fulfills the property

(2.5) forall (P,q) €1, if q€Y, then PNY # 0.
The family of subsets Y fulfilling property (2.5) is equal to the knowledge space
Kr derived from I. O

Note that, for a given implication relation I, property (2.5) holds for a set Y
if and only if property (2.3) holds for the set X =Y.

The idea of applying knowledge or failure spaces to the assessment of stu-
dents’ knowledge originates from Doignon and Falmagne (1985). The authors
derive knowledge spaces from a representation of AND/OR graphs (Nilsson,
1971) called surmise systems, which are introduced in J.-P. Doignon’s chapter
in this volume. Koppen and Doignon (1990) derive knowledge spaces from
a relation related to the implication relation, which we will refer to in the
following chapter.

EXERCISE 2.3.1 Let F; be the failure space from the example 2.3.2. De-
termine the smallest failure state in F; containing X for the sets X =0, X =

{a,c}, and X = {b,c}. O

EXERCISE 2.3.2 Let K; be the knowledge space from the example 2.3.2.

Determine the largest knowledge state in K; contained in X for the sets X =
{a,b,c,d}, X ={b,d}, and X = {a,d}. O

EXERCISE 2.3.3 Let V = {a,b,c,d} be a set and let I = {({c}, d),
({a,b}, ¢)} be an implication relation.

(a) Determine the failure space F; derived from 1.

(b) Determine the knowledge space K; derived from I. 0
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EXERCISE 2.3.4 Let S C 2. Determine the sets NS and US for S = 2V
and for S = (), considering the fact that both NS and JS can also be defined
as

xEUS if and only if there is a X € § so that z € X.
ze€()S ifandonlyif forall X €S, X €S impliesz € X. O

2.4 Combinatorial Galois connections

In this section, we introduce several concepts for elaborating our understanding
of the relationship between implication relations and knowledge spaces. These
prerequisites will eventually help us to prove a one-to-one correspondence be-
tween certain implication relations and knowledge spaces.

DEFINITION 2.4.1 A binary relation R C X x X is called a relation on the
set X. The converse of a binary relation R on X is the relation R~ defined
as

yR™ 'z if and only if xRy

A set X together with a binary relation R on X is written as the pair (X, R).
A pair (X, <) is a partial order if the following three properties are fulfilled for
the relation < on X:

(i) z <z for all z € X (reflezive).
(i) If z <y and y < z, then x =y for all x,y € X (antisymmetric).
(iii) If x <y and y < z, then z < z for all z,y, z € X (transitive).
For a partial order (X, <) the converse <~ of the relation < is written as >.
(Il

EXAMPLE 2.4.1 Let F be a family of subsets of a set V ordered by the
inclusion relation C. The pair (F,C) is a partial order. O

DEFINITION 2.4.2 Let (X, <) be a partial order. The function ¢: X — X
that assigns to each member x € X a member ¢(x) = z¢ € X with the following
properties,

(i) z < x°,
(ii) z¢ = (z°)¢,
(iii) y < 2 implies y° < z°.
is called a closure operator on (X, <). The images x¢ are called the closed
members of the set X. O

The following example demonstrates that the members Y* of a failure space
determined by the equation (2.4) can be considered as closed sets for a closure
operator on the partial order (2V, C).
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EXAMPLE 2.4.2 Let V be a set, let F; be a failure space, and consider the
partial order (2", C). Then the function

o: 2V 9V
which assigns to each member Y € 2V the smallest member Y* € F; containing
Y is a closure operator on (2V, C). The closed members of 2V are the members
of the failure space F;. In particular, for the set V' = {a,b,c,d} of questions

from our introductory example 2.1.1, and the failure space F; determined in
the example 2.3.1 we obtain:

0° =0, {a}* = {a, b}, {b}* = {0}, {c}* = {c}, {d}* = {d},
{a,b}* = {a, b}, {a,c}* ={a,b,c,d}, {a,d}* = {a,b,d},
{b,c}* ={b,c,d}, {b,d}* = {b,d}, {c,d}* = {c,d},
{a,b,c}* ={a,b,c,d}, {a,b,d}* = {a,b,d}, {a,c,d}* = {a,b,c,d},
{b,c,d}* ={b,c,d}, {a,b,c,d}* ={a,b,c, d}.
For these subsets of the set V' we can see that the conditions (i), (ii), and
(iii) of definition 2.4.2 are fulfilled. For all subsets X, Y C V we have

(i) X C X*,
(i) (X € X*)°, for example, {a,d}* = {a,b,d} = {a,b,d}*, and
(iii) X CY implies X* C Y*. O

The next example illustrates that there are closure operators on partial
orders for which the failure spaces and the knowledge spaces can be determined
as closed elements.

EXAMPLE 2.4.3 Let 22" = F be the set of all families of subsets of a set
V. The function
that assigns to each family F C 2 the set ' = {NS | S C F} is a closure
operator on (F,C). The closed members of F are the families of sets, which

are closed under intersection and contain the empty set as well as the set V.
Analogously, the function

w F o F

that assigns to each family 7 C 2V the set F* = {US | S C F} is a closure
operator on (F,C). The closed sets are the families of sets which are closed
under union, and contain the empty set as well as the set V. The families

Fiand F* are called the closure of the family F under intersection or under
union, respectively. For example, the closure under intersection of the family,

F ={{c}.{a,b},{c,d},{a,b,d},{b,c,d}},

is equal to the failure space determined in the example 2.3.1. The closure under
union of the family,

g= {{&7 b, d}a {Cv d}7 {CL, b}7 {C}v {CL}},
is equal to the knowledge space from the example 2.3.2. Note that V =
{a,b,c,d} € F'since S = ) C F, and, by convention, (S = () = V. By a
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Figure 2.2. Diagram illustrating the functions from Definition 2.4.3

similar convention we obtain () € G*. (We have just answered the hardest part
of exercise 2.3.4! There you can find hints explaining the conventions.) O

In the following, we will introduce a procedure for establishing correspon-
dences between the closed members of two different partially ordered sets. For
that purpose we require the notion of the composition of functions.

DEFINITION 2.4.3 Let X, Y, and Z be sets. The composite of two given
functions
gX—=Y hY -2

is the function ho g : X — Z with values given by (ho g)(x) = h(g(x)) for all
r e X. a

The definition 2.4.3 may be visualized by the diagram 2.2 above.

DEFINITION 2.4.4 Let (X, <;) and (Y, <s) be two partial orders, and let
(g, h) be a pair of mappings, g: X — Y, h:Y — X. The pair (g, h) is called a
Galois connection between X and Y if the following four conditions hold, for
all z, 2’ € X, and for all y,y’ € Y
(i) If x <y 2/, then g(z) >4 g(2'),
(i) If y <o o/, then h(y) 21 h(y'),
(iii) = < (hog)(),
(iv) y <2 (goh)(y).
The elements, (ho g)(x) € X, and the elements, (g o h)(y) € Y, are called
the Galois closures of x and y, respectively. The combined correspondences,
(hog) and (goh), are called Galois closure operators. O

EXAMPLE 2.4.4 Suppose (X, Ry) and (Y, Rs) are two partial orders,where
X ={a,b,c,d},

Ry = {<a7 b>> (b7 C)? (C7 d)v (CL,C), (avd)a (b> d)? <a7a>7 (b7 b)7 (Cv C)? (d7 d)}a

and
Y - {I7 y7 Z? u}?

Ry ={(z,y), (y, 2), (2, ), (x,2), (z, w), (y, w), (z,2), (4, 9), (2, 2), (u, u)}.



2 2 Combinatorial structures for the representation of knowledge 67

Let g: X — Y, with g(a) =u, g(b) =u, g(c) =2, g(d) =y. Let h: ¥ — X,
with h(u) = b, h(z) = ¢, h(y) = d, h(z) = d. The assignments by the functions
g and h are illustrated by the diagram 2.3 below substituting < for R; and >
for Ry !. The Galois closures of the set X are the elements

(hog)(a) = (hog)(b) =b, (hog)(c)=c, (hog)(d)=d.
The Galois closures of the set Y are the elements u, z, and . a

The following well known propositions (see, for example, Ore, 1962) will
turn out to be useful in the sequel.

PROPOSITION 2.4.1 Under a Galois connection (g,h) the following two
conditions are fulfilled:

(i) g(hog)(z) = g(z).  (ii) h(go h)(y) = h(y). m

PrROOF. We prove (i). From a combination of the properties (iii) and (i)
in the definition 2.4.4, it follows that g(h o g)(z) < g(x). By the property (iv)
from the same definition we obtain that g(x) < g(ho g)(x). (ii) can be proven
analogously. [ |

Using the definition 2.4.4 of a Galois connection and the proposition 2.4.1,
we obtain the following, immediate result.

PROPOSITION 2.4.2 The Galois closure operators (h o g) and (g o h) are
closure operators on (X, <) and (Y, <), respectively. O

With the proposition 2.4.2 the elements z¢ = (hog)(z) and y° = (goh)(y)
are closed members of X and Y, respectively.

PROPOSITION 2.4.3 The closed elements x¢ in X and y¢ in'Y can be char-
acterized by the statements

x¢ = h(y) for somey €Y and y°=g(x) for some x € X,

and the Galois connection defines one-to-one correspondences for the closed
elements of the sets X and Y. O

a < b < ¢ < d

v oz oz oz Yy =2

Figure 2.3. Diagram illustrating the functions g and h from example 2.4.4
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PROOF. If an element x¢ = h(y) for some y € Y, then it is closed according
to the proposition 2.4.1. Conversely, if x¢ is a closed element, then it is an image
under h, namely z¢ = h(g(x)). Finally, using the proposition 2.4.1 we obtain
that each of the relations

2“=h(y) and y° =g (2
implies the other. [ ]

EXAMPLE 2.4.5 In the example 2.4.4 the one-to-one correspondence be-
tween the closed members of the sets X and Y associates the closed element
b € X with the closed element v € Y, the element ¢ € X with z € Y, and
de X withy eY. O

2.5 The relationship between implication relations and
knowledge spaces

In this section, we will establish a Galois connection between implication re-
lations and families of subsets of a finite set. We will prove that there is
a one-to-one correspondence between knowledge spaces and those implication
relations which contain all members which can be inferred from other members
of the implication relation. In the last section of this chapter we show that
this relationship between knowledge spaces and implication relations can be
applied in procedures for constructing a knowledge space from the judgments
of an expert.

We first introduce a theorem by Koppen and Doignon (1990) and by Miiller
(1989), and subsequently report related results by Birkhoff (1937), Monjardet
(1979), by Doignon and Falmagne (1985).

THEOREM 2.5.1 Let V' be a set, let I be the set of implication relations on
V', and let F be the set of all families of subsets of the set V', both ordered by
the inclusion relation. Define a mapping, r: F — I by requiring that

(P,q) € r(F) if and only if  for every X € F, if P C X, then q € X.
Similarly, define a mapping f:1 — F by setting
X € f(I) if and only if  for every (P,q) € I, if P C X, then q € X.

Then the pair (r, f) is a Galois connection. The Galois closure (f or)(F) is
the smallest failure space containing F. O

ProOOF. (i) To prove F C F' implies r(F) 2 r(F’) , suppose F C F’', and

let P C V. Since F C F', it follows that \{X € F | PC X} D N{X € F'|
P C X}. Hence, for all g € "{X € F' | P C X}, we obtain that (P,q) € r(F)
whenever (P, q) € r(F') by definition of the map r.
(ii) To prove I C I’ implies f(I) D f(I'), suppose I C I’. Using the definition
of the map f, f(I) =2Y\{X CV | (Pgq) € [and P C X andq ¢ X},
whereas f(I') = f(HD\{X CV | (P,q) € (I'"\I)and P C X and q & X}.
Hence, f(I) 2 f(I').
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(iii) To prove F C (f or)(F), suppose Y € F. If P C Y, then N{X € F |
PCX}CY. Hence,if ge  {X e F|PC X} and PCY, thenge Y. By
the definition of the map r, it follows that ¢ € Y whenever (P, q) € r(F) and
P C Y. By the definition of the map f, we have Y € (f or)(F).

(iv) To prove I C (ro f)(I), suppose (P,q) € I. Using the definition of the
map f, we have ¢ € X for all X € f(I) with P C X, and hence ¢ € N{X €
f(I)| P C X}. By definition of the map r, we obtain (P,q) € (ro f)(I). =

Note, that the failure space f(I) is defined so that it is equal to the failure
space derived from [ in definition 2.3.1.

COROLLARY 2.5.1 The Galois connection (r, f) induces a one-to-one cor-
respondence between the closed implication relations on' V' and the failure spaces,
derived from implication relations on V. O

The corollary to theorem 2.5.1 follows from the proposition 2.4.3. Since
there is a one-to-one correspondence between the knowledge and failure spaces
derived from the same implication relation I, the Galois connection (7, f) also
induces a one-to-one correspondence between knowledge spaces and implication
relations.

Theorem 2.5.1 characterizes the Galois closure ( for)(F), but not the Galois
closure (r o f)(I). The following proposition by Koppen and Doignon (1990)
gives a compact description of the closed implication relations.

PROPOSITION 2.5.1 Let I be an implication relation on V. If I° is the
smallest implication relation containing I, and fulfilling the properties (i) and
(i) below, then

I° = (ro f)(I).
(i) For each P C @, and each p € P, we have (P,p) € I°.
(ii) Let O, P C V, and let p,q € V. If (O,p) € I° for all p € P, and if
(P,q) € Ay, then it follows that (O, q) € As. O

The elements (P, q) of the closed implication relation (r o f)(I) can be in-
terpreted as the statements of the form (2.1), which follow logically from the
correct statements encoded by the implication relation /. The closed implica-
tion relation (r o f)(I) contains all statements which can be inferred as being
correct.

The smallest closed implication relation on V' is the relation T which is
defined by expression (2.2) and represents the set of tautological statements
of the form (2.1). To the relation T, the largest closed failure space, 2V, is
assigned by the function f defined in theorem 2.5.1,

(2.6) f(T) = 2Y, and r(2") = T.

The smallest closed failure space is {(), T'}. By the function r, the largest closed
implication relation, (2V \ @) x V, is assigned to the smallest failure space,

(2.7) r({0,V}) = 2V \0) x V, and f((2"\ 0) x V) = {0, V}.
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F I
for rof
T
Fi Ir
f

Figure 2.4. The correspondences between the implication relations I and I and
the families of subsets F and Fj.

ExAMPLE 2.5.1 Let F be the family of subsets of the set V' = {a,b,c,d}
given in the example 2.4.3,

F ={{c},{a,b},{c,d},{a,b,d},{b,c,d}},

let I be the implication relation on V' from the example 2.2.2, which represents
the expert’s statements from the introductory example 2.1.1.

I= {({a}7 b)7 ({b7 C}v d>}

Let F; be the failure space from the example 2.3.1,

Fr=A{0,{b},{c},{d},{a, b}, {b,d},{c,d},{a,b,d},{b,c,d},{a,b,c,d}}.

Let I be the following implication relation on V:

Ir = {({a}, b), ({b,c}, d), ({a,c}, b), ({a,c}, d), ({a.d}, b),
({a,b,c}, d), ({a,c,d}, b)} U T,
where T is defined by (2.2). Using the definition of the function f in the
theorem 2.5.1, we obtain that

fU)y=Fr and f(IF)=Fr.
From the definition of the function r in the theorem 2.5.1, it follows that
T(f):[]: and T(f[)zfj.‘.

By proposition 2.4.3, the relation Ir is a closed implication relation, and the
family F7 is a closed family of sets, since they are images under r and f,
respectively. The one-to-one correspondence established by the Galois connec-
tion (7, f) is illustrated in this example by the fact that the closed relation Ir
is assigned to the closed family F; by the function r, and, conversely, that F;
is associated to Ir by the function f. The correspondences between the impli-
cation relations I and Ir and the families of subsets F and F; are visualized
by figure 2.4. O

In many applications, a set V of questions is presented to a group of students
and the students are asked to answer all the questions in V. In this manner the
set of questions which are answered incorrectly by a student can be regarded
as the student’s failure state. The failure states of all students in the group
can be represented by a family F of subsets of the set V. We can thus apply
the theorem 2.5.1 to determine the largest implication relation consistent with
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the student’s data and to derive the largest set of failure states which can be
inferred from the students’ data represented by F.

The theorem 2.5.1 is related to a variety of results on Galois connections
between relations and families of sets. Let us consider the special case of an
implication relation S on V' which is defined as

PSq if and only if |P| =1,

where |P| denotes the size or the cardinality of P. In that manner we can
identify a relation S with a binary relation S C V' x V. (Note that we have
given the solution to exercise 2.2.2!) Birkhoff (1937) has proven that there
is a one-to-one correspondence between the binary relations on V' which are
reflexive and transitive, and the families of subsets of V' which are closures
under union and intersection. Monjardet (1970) has shown that Birkhoft’s
result can be considered to be an inference of the fact that a Galois connection
can be established between the binary relations on a set V' and the families of
subsets of the set V. Koppen and Doignon (1990) extend Monjardet’s work by
constructing a Galois connection between the binary relations on the set 2V
and the families of subsets of V. The resulting Galois closures are the families
of subsets, which are closed under union, and relations E on 2V which the
authors call “entail” relations. An entail relation £ on 2 is reflexive and
transitive.

The idea of generalizing the results of Birkhoff (1937) and Monjardet (1970)
and of applying the generalized result to the assessment of knowledge is due
to Doignon and Falmagne (1985). Doignon and Falmagne establish a Galois
connection between representations of AND/OR, graphs called “surmise sys-
tems” and families of subsets. As closed families of subsets they obtain the
knowledge spaces. The “surmise systems” and the closed “surmise systems”
are introduced in Jean-Paul Doignon’s chapter in this volume.

EXERCISE 2.5.1 Let V be the set {a,b,c,d} and I = {({c},d), ({a,b},¢)}
the implication relation from exercise 2.3.3. Determine the closed implication

relation (r o f)(I). O
EXERCISE 2.5.2 Let V = {a,b,c,d} and I = {({c},¢), ({a,b},b)} be an
implication relation on V.
(a) Determine the failure space f(I).
(b) Determine the closed implication relation (r o f)(I). 0
EXERCISE 2.5.3 Consider the family F = {{a,b,c}, {a,b,d}, {a,c,d},
{b,c,d}} of subsets of the set V = {a,b,c,d}.
(a) Determine the closed implication relation r(F).
(b) Determine the failure space (f or)(F). O

EXERCISE 2.5.4 Let I = {({a},b), ({b},¢), ({c},d), ({d},a)} be an im-
plication relation on 2V \ ) to V = {a, b, c,d}.
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(a) Determine the failure space f([).

(b) Determine the closed implication relation (r o f)(I). O

EXERCISE 2.5.5 Let F be the family {0} of subsets of a set V. Determine
the closed implication relation (F) (Hint: use the definition of the intersection
of a family S C 2V given in the exercise 2.3.4). O

FOR FURTHER READING 2.5.1 For further reading on the topics of closure
operators and Galois connections we recommend Ore (1962) and Stanat and
McAllister (1977) as introductions. For deeper understanding we recommend
Birkhoff (1979), and the articles cited in this section. O

2.6 A procedure facilitating an expert’s judgments

A procedure that interactively questions an expert for his judgments on state-
ments of the form (2.1) is introduced in this section. This procedure will allow
an expert to omit judgments on statements that logically follow from previous
judgments, and to avoid contradictory judgments. The questioning procedure
is based on the Galois connection between the implication relations and the
families of subsets of the set V' established by theorem 2.5.1. Somewhat differ-
ent variants of such a procedure for querying an expert are given by Dowling
(in press), Koppen (in press), Koppen and Doignon (1990), and by Miiller
(1989).

The procedure for questioning an expert works step wise. At each step [
with [ > 1, exactly one statement is presented to the expert. The expert
judges, i.e., accepts or rejects this statement. A new statement presented for
judgment at step [+ 1 must fulfill two restrictions which ensure that judgments
which follow from previous judgments are not presented to the expert at any
given step. These two restrictions will be introduced in the definition 2.6.2
below. The procedure terminates, at step n, say, whenever no new statement
fulfills these restrictions.

In the following we will differentiate between three implication relations.
An implication relation representing the set of statements of the form (2.1)
judged by the expert up to the step [, an implication relation whose members
are interpreted as the statements accepted by the expert up to step [, and an
implication relation characterizing the statements rejected by the expert up to
the step [.

DEFINITION 2.6.1 Let # = J, C J, C --- C J, C --- C J, be the
sequence of implication relations on V' judged up to step [. Such a sequence has
the property that |J;41\J;| = 1. Forl > 0, the member (P, q) € J;\J;— is called
the statement judged at the step . Let ) = AgC A C --- CAC--- CA,
be a sequence of implication relations on V' such that A; C J;, and either
Al+1 = A, or Al—i—l Z Jyforall 0 <l <n. If (P, q) € A \ Al—l; then (P, q) 18
called the statement accepted at the step .
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If (P,q) € J;\ (Ji-1UA,), then (P, q) is called the statement rejected at the
step 1. The set J; \ A; of statements rejected at the steps j < [ is denoted by
R;. O

The following definition by Miiller (1989) differentiates between sets of
statements of the form (2.1) the acceptance of which is implied by the expert’s
previous judgments, and sets of statements the rejection of which follows from
the expert’s previous judgments.

DEFINITION 2.6.2 Let r and f be the functions defined in theorem 2.5.1.
The closed relation (r o f)(A4;) is called the set of the positive inferences of the
members of A;. The members of the set

Ri ={(0,5) € 2" \0) x V[ Rin (ro f)(AU{(0,5)}) # 0}

are called the negative inferences of R; with respect to A; or, briefly, the negative
inferences of R;. The sets A; and R; are called contradictory if and only if

R N (rof)(4) # 0.
The implication relations J; are called consistent, if and only if, for all steps

0 <1 < n, one has whenever (P,q) € J;.1 \ J;, then the conditions [a] and [b]
below are fulfilled.

[a] (Pq) & (ro f)(A).
[b] (P,q) ¢ R*; i.e., there is no (O, s) € R; such that (O,s) € (ro f)(A U

{(P,q)}) O

By theorem 2.5.1, the positive inferences (ro f)(A;) of the set of statements
A; accepted up to step [ have been shown to be those members of (2V\ ) x V/
the acceptance of which logically follows from the acceptance of the members
of A;. The negative inferences R of the statements R; rejected up to step [
are defined to be those members of (2V\ ()) x V' the rejection of which logically
follows from the rejection of the members of R; and from the acceptance of
the members of A;. Hence we have defined a set A; of accepted statements
and a set R; of rejected statements to be contradictory, if there is a member
(P,q) € (2" \ 0) x V the rejection as well as the acceptance of which follows
from R; and A;.

The following proposition by Miiller (1989) summarizes the properties of
a procedure presenting only members of consistent sets J; to an expert for
judgment.

PROPOSITION 2.6.1 If the implication relations J;, with 0 < | < m, are
consistent, then the conditions (i), (ii), (iii), and (iv) below are fulfilled:

(i) No statement accepted at a step l is an inference of a set of statement
accepted at steps 0 < j < [.

(ii) No statement rejected at a step | is an inference of a set of statements
accepted at steps 0 < j < [.

(iii) No statement rejected at a step | is an inference of a set of statements
accepted at steps m > j > [.
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(iv) The set of statements accepted at the steps j < | and the set of statements
rejected at the steps j <l are not contradictory for all steps 0 <1 < mQO

An interactive procedure presenting only those statements to an expert for
judgment which fulfill the conditions [a] and [b] of definition 2.6.2 omits all
judgments which are redundant in the sense that a statement would be judged
which is already a positive inference of statements accepted at previous steps,
or a negative inference of statements rejected at previous steps. An interactive
questioning procedure restricted by the conditions [a] and [b] is so that the sets
of accepted statements and the sets of rejected statements are not contradictory
at all steps.

A first way of testing the conditions [a] and [b] of the definition 2.6.2 is to
store and to update the set (r o f)(A;) of positive inferences and the set R;
of negative inferences at each step [. Then we can generate a new statement
(P, q) at step [ + 1, and test if the restrictions [a] and [b] of the definition 2.6.2
are fulfilled. If both conditions hold, then the statement (P, q) is presented
to the expert for judgment. If these restrictions are not fulfilled, then a new
statement (P’,q) is generated, we check if the restrictions [a] and [b] hold for
the new statement (P’,q') and so on until all members (P, q) € (2" x V) \ 0
are judged or inferred.

The updating of the implication relations (r o f)(A;) and R} at each step [
is not a trivial task, particularly when the number of inferences is large. There
are algorithms available, however, that compute the new positive and negative
inferences at each step [+ 1, and add these inferences to the old sets (ro f)(A4;)
and R;. Koppen and Doignon (1990) have developed iterative updating rules
which have been applied in practice. Different, non-iterative updating rules
have been suggested by Dowling (1991).

Storing the complete sets (r o f)(A;) and R} until all possible statements
(P, q) are judged or inferred is not feasible for larger sets V. From the intro-
duction, we know that we would have to store up to approximately 2.8 - 1016
statements if only 50 questions are considered. In this predicament, we ob-
tain help from theorem 2.5.1, i.e., from the fact that implication relations and
families of subsets of a finite set are related by a Galois connection. This
enables us to replace each closed set (r o f)(A;) of accepted assertions by an
equivalent structure, the failure space f(A4;), or the corresponding knowledge
space. This replacement is feasible since the sizes of the sets (r o f)(A;) and
f(A;) are inversely related, the larger the size of the set (r o f)(A;) of positive
inferences, the smaller the size of the failure space f(A4;). As soon as the set
(r o f)(A;) becomes too large, we can replace it by the failure space f(A;).
From theorem 2.5.1, it follows that (P, q) & (r o f)(A;) if and only if

(2.8) ¢ P*=({X € f(4)|PCX});
that is, condition (2.8) can be tested instead of the restriction [a] of defini-
tion 2.6.2.

Conditions for replacing the condition [b] of definition 2.6.2 can be found in
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Dowling (in press), and in Koppen (in press). Both articles suggest algorithms
which control the questioning of an expert by families of sets representing the
sets of positive and negative inferences at each step [, and both algorithms
have been applied successfully in practice. The algorithms do, however, differ
in various aspects which are discussed in Dowling (in press).

The following example illustrates the interactive procedure for questioning
an expert. We exemplify the updating of the inferences (r o f)(A;) of the
statements accepted up to a step [, the failure space f(A;), and the negative
inferences R;.

EXAMPLE 2.6.1 Let V = {a,b,c,d} be the set of questions from the intro-
ductory example 2.1.1 and let T be the implication relation representing the
“tautological” statements of the form (2.1) defined by (2.2). For simplifica-
tion we will write the premises P of the pairs (P,q) € (2V \ ) x V without
surrounding braces, and without separating the elements of a premise P by
commas. For example, the pair ({a, b}, d) with the premise P = {a, b} will be
written as (ab, d).

The steps of the procedure for querying an expert will again be denoted
by the index [. The procedure is so that the sets of statements presented for
judgment are consistent; i.e., a member (P, q) € (2 \ ) x V presented for
judgment at a step [ + 1 is neither a inference in (r o f)(A;) nor a negative
inference in R}. The procedure terminates as soon as

(rof)(A)UR; = (2" \0) x V.
Whenever a statement (P, q) is accepted by the expert at step [+ 1 we write

(P,q) € Aiiq \ AL If a statement (P, q) is rejected by the expert at step [ + 1,
then we write (P, q) € Ri11 \ Ri.

e Stepl =0, Ay =0, Ry = 0:
f(Ao) =265, (o f)(A) =T, Rj =0
Step [ =1, (ab,c) € Ry \ Ry:
J(A) = f(Ao),  (ro f)(A1) = (ro f)(Ao),
R; = Ry U{(ab,c), (a,c), (b,c)}.
Step [ = 2, (ab,d) € Ry \ Ry:
f(A2) = f(A1),  (ro[f)(Az) = (ro f)(A1),
Ry = Ry U{(ab,d), (a,d), (b,d)}.
Step I =3, (ac,b) € A3\ Ay:
f(As) = {0.{a}, {0}, {c} {d},{a, b}, {a,d} {b, c}, {b,d} {c, d},
{a,b,c},{a,b,d},{b,c,d},V},
(ro f)(As) = (ro f)(A2) U{(ac,b), (acd,b)}, R;= R;.
Step I =4, (a,b) € Ay \ As:
f(Ag) = {0,{b}, {c}, {d}, {a, b}, {b, ¢}, {b, d}, {c, d},
{a,b,c},{a,b,d},{b,c,d}, V},
(ro f)(As) = (ro f)(As) U{(a,b), (ad,b)}, R = Rj.
Step [ =5, (ac,d) € A5\ Ag:
f(As) ={0,{b}. {c}, {d}, {a, 0}, {b, c}, {b, d}, {c, d},
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{a,b,d},{b,c,d}, V},
(ro f)(As) = (ro f)(As4) U{(ac,d), (abc,d)},  R5 = Rj.
Step [ =6, (ad,c) € Rg \ Rs:
f(A6) = f(As5), (ro [)(As) = (ro f)(As),
R = Rt U{(ad,c), (abd,c), (bd,c), (d,c)}.
Step I =7, (be,a) € Ry \ Rg:
f(A7) = f(Aq),  (ro [f)(Ar) = (ro [)(Ae),
R: = R{U{(be,a), (b,a),(c,a)}.
Step [ =8, (be,d) € Ag \ A
f(As) ={0.{b}. {c}, {d}, {a,0},{b,d} {c,d} {a,b,d} ,{b,c.d}, V},
(ro f)(As) = (ro f)(A7) U{(bc,d)},
Ry = R U{bed, a), (bd,a), (cd,a), (d,a)}.
Step I =9, (¢,d) € Ry \ Rs:
f(Ag) = f(As), (rof)(Ag) =(rof)(As), Ry=R;U{(c,d)}.
Step [ = 10, (cd,b) € Rip \ Ro:
f(Aro) = f(Ag), (o f)(Aw) = (ro [)(Ag),
Ry = Rg U {(Cd7 b)? (C, b)? (d7 b)}
At the last step [ = 10 we obtain that
(ro f)(Aw) URj = (2" \0) x V. O

In this example the expert has given ten judgments instead of the possible
twenty eight judgments on statements which do not correspond to tautologies.

A procedure selecting the statements presented to an expert for judgment
may be restricted by additional conditions which further reduce the number
of statements to be judged. The conditions [a] and [b] of definition 2.6.2 are
chosen so that they do not yet predetermine the sequence in which the state-
ments are selected for judgment. Ordering the statements to be judged prior
to presentation could influence the efficiency of the procedure. Whenever the
set V' of questions is large, a means of limiting the size of the premise of the
statements to be judged to some upper bound will be necessary. For example,
were a statement to fill a terminal screen, it would be unlikely that the expert
could make a reliable judgment. A condition minimizing the size of the premise
of the judged statements is given by Miiller (1989).

Such a procedure for questioning experts has been applied in three projects.
In the first project teachers judge statements on 50 problems from the field of
U.S. high school mathematics (Falmagne et al, 1990). In the second project
tutors of a system for computer aided design (CAD) judged statements on
28 skills required to use the CAD system. The third project is the one men-
tioned in the introductory example.

FOR FURTHER READING 2.6.1 We recommend the articles cited in this
section. For readers who want to implement an algorithm for questioning
experts we suggest the articles Dowling (in press), and Koppen (in press). O
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3 Establishing knowledge spaces by
systematical problem construction
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Universitdt Heidelberg, Psychologisches Institut, Hauptstrale 47-51,
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3.1 Introduction

Procedures which are to test a subject’s knowledge concerning a specific domain
obviously require (in addition to other prerequisites) a set of problems.

The answers to these problems may serve as a basis for a hypothesis about
the subject’s actual knowledge. A teacher might assume that a student pos-
sesses all of the knowledge necessary to solve the problems. There are at least
two different methods of questioning;:

e All available problems are presented and the set of problems which have
been solved correctly is assumed to represent the student’s knowledge
concerning the investigated domain. This method seems to be rather
uneconomical, particularly if the set of problems is quite large.

e The problems which are presented are selected adaptively from a problem
set. If a teacher presents a problem which is solved correctly by a student,
the next problem will probably be more difficult because the teacher will
suppose that the student is capable of solving all easier problems.

Certainly the second method of knowledge assessment requires an a-priori hy-
pothesis about a structure on the problem set. Such a hypothesis may, for
example, be: “If a student succeeds in multiplying two fractions, she or he will
also be able to multiply two natural numbers”. The manner in which a teacher
will conduct an assessment procedure depends largely on his or her own expe-
rience and knowledge. This experience and knowledge are implicitly used for
structuring a knowledge domain. We would like to investigate these hypotheses
of a domain’s structure in a formal way. First we will take a look at various
types of relations that may be defined on a set of problems. This overview

!The research reported in this paper is based on Albert (1989, 1991); it was supported
by Grant Lu 385/1 of the Deutsche Forschungsgemeinschaft to J. Lukas and D. Albert
at the University of Heidelberg. We are grateful to P. Hellriegel, B. Hierholz, J. Ptucha
and M. Wolk (University of Heidelberg) for collecting the data, to J. Heller (University
of Regensburg), and to J. Lukas and H. Rodenhausen (University of Heidelberg) for their
invaluable comments on an earlier draft of this paper. We also thank M. Sauter (University
of Heidelberg) for the proof of Proposition 3.3.1.



3 Establishing knowledge spaces by systematical problem construction 79

serves as a prerequisite for a short introduction to the theory of knowledge
spaces put forward by Doignon and Falmagne (1985) (see Section 3.2).

We will focus on the question, how a relation on a set of problems can be
established by systematical problem construction (Section 3.3).

First we will give some examples of relations on sets of problems. For this
purpose, we must introduce a few basic concepts of ordering theory, e.g. how
can statements like “problem x is more difficult than problem 3” or “problem
x is at least as difficult as problem y” be denoted?

Our examples will involve quasi-orders, linear orders (chains) and anti-
chains. Similar examples can be found for other types of orders such as weak
orders and partial orders. For a general introduction to ordering theory we
refer to Davey and Priestley (1990). Let us first give some definitions.

DEFINITION 3.1.1 Mj x ... x M, :={(21,...,2,) | x; € M;} is called the
Cartesian product of the sets My, ..., M,. O

DEFINITION 3.1.2 A subset P C M; x M, is called binary relation. O

DEFINITION 3.1.3 Let S be a set and P a binary relation on S. (S, P) is
a quasi-order if for all z,y,z € S,?
(i) zPx (reflexive),
(i) zPyAyPz= xPz (transitive). 0

Quasi-orders can be depicted as Hasse diagrams. In these diagrams, the
relation is shown in a very economical way, i. e., lines for ‘reflexive’ ordered pairs
such as (z, z), and for ordered pairs which can be derived through transitivity
(e.g., if (z,y), (y, 2) € P, then (z,2) € P) are omitted. For a detailed definition
see, e.g. Davey and Priestley (1990, p.7).

ExXAMPLE 3.1.1 We have a set Q = {x,y, z} of problems on which a quasi-
order {(z, ), (y,v), (2, 2), (y,z), (z,2)} is defined. Relation P is shown in Fig-
ure 3.1(a). For our set of questions, this means that problem z is should be
more ‘difficult’ than problem y and problem z. It is assumed that problems y
and z cannot be compared. O

DEFINITION 3.1.4 Let S be a set and P a binary relation on S. (S, P) is
a linear order if for all x,y,z € S,

(i) xPyVyPx (connected),
(i) zPyAyPr =z =y (antisymmetric),
(iii) 2Py AyPz=xPz  (transitive). O

Note that each linear order is also reflexive. Because reflexivity can be derived
from the properties stated above, we do not have to mention it explicitly. In
general, a linear order is a special case of a quasi-order with the additional
properties of connectedness and antisymmetry.

2The expression xPy denotes that the ordered pair (z,y) is an element of the relation
PCSxS.
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Oz
Oz (l)y Oz Oy Oz
/N |
Oy O¢= Oz
(a) (b) (c)

Figure 3.1. Hasse diagrams for Examples 3.1.1, 3.1.2 and 3.1.3.

EXAMPLE 3.1.2 On a set Q = {z,y, 2z} of problems a linear order {(z,x),
(y,v), (2,2), (y,x),(2,y), (2,2)} is defined. First let us look at the Hasse di-
agram in Figure 3.1(b). We can see that this order is a special case of a
quasi-order, because every problem is comparable to all other problems. Prob-
lem x, for example, is supposed to be more ‘difficult’ than problems y and z.
This type of problem ordering is known as a Guttman scale (Guttman, 1947,
1950). O

DEFINITION 3.1.5 Let S be a set and P a binary relation on S. (S, P) is
an antichain if xPy in S if and only if x = y. O

Note that the antichain is also a special case of a quasi-order. Its defining
properties are reflexivity, transitivity, symmetry and antisymmetry.

EXAMPLE 3.1.3 On a set Q = {z,y, 2} of problems an antichain order
{(z,2),(y,v),(2,2)} is defined. The Hasse diagram in Figure 3.1(c) shows
that the problems of () are not connected. The postulation of an antichain
order may be adequate for sets of heterogeneous and completely incomparable
problems. However, it is clear that such a set cannot be used for an economical
adaptive questioning procedure because no conclusions can be drawn from a
subject’s answers. O

An important topic in problem ordering is the interpretation of the binary
relation that is defined on the problem set. Up until now, we have mentioned
only a few unspecified differences in ‘difficulty’. An interpretation will in addi-
tion to further theoretical considerations be introduced in the following section.

3.2 Knowledge spaces

The theory of knowledge spaces was first introduced by Doignon and Fal-
magne (1985). We will begin with a presentation of the basic concepts of this
theoretical approach.

Suppose we must test a student’s knowledge of elementary algebra. It is
advisable to begin with a problem of medium difficulty. Depending on the
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answer, we can go on with a more difficult or with an easier problem. We will
proceed in this manner until we have acquired sufficient information about the
student’s knowledge.

An important prerequisite for such a procedure is a hypothesis about a
structure on the problem set. The theory of Doignon and Falmagne shows,
how the structure of problems can be represented in a formal way (for an
introduction see Falmagne, Koppen, Johannesen, Villano, and Doignon, 1990).

Let Q@ = {z,y,z} be a set of problems which is used for an examination.
For some of these problems, a statement such as “if a student is able to solve
a specific problem in @), he or she will also be able to solve other questions
belonging to Q7 may be plausible. This can be formalized in terms of a binary
relation <. The expression y =< z is interpreted as follows: Given a correct
response to problem xz, we surmise a correct answer to problem y. The relation
= is called surmise relation. It is assumed that the surmise relation is a quasi-
order on Q).

A surmise relation can be depicted as a Hasse diagram. Figure 3.2(a) shows
a hypothetical order on the problem set (). According to this order we assume

O {z,y,2}
Ilj {y, 2}
/N
O O{yy O{z}
/N N
Oy O= ae
(a) (b)

Figure 3.2. Surmise relation and knowledge states for the problems in @ (problems
are marked by circles, states are marked by squares).

that each of the students capable of solving problem x, will also be able to
solve problem y and problem z. Based on this assumption we can collect all
subsets of () which agree with the surmise relation. These subsets are called
knowledge states.

DEFINITION 3.2.1 (see Falmagne et al., 1990) Let @) be a set of problems.
K CQisastate & (Vg,t€Q,q=tNte K = g€ K). O

The family of all possible states with respect to a set of problems is a knowledge
structure. For our example, we obtain the structure F:

./T = {@7 {y}7 {Z}7 {ya 2}7 {I7 Ys Z}}
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This knowledge structure contains all subsets of () which are expected to occur
as results of diagnostic procedures. The purpose of such procedures is to
assign subjects to one of these states without presenting all problems in @)
(see Falmagne et al., 1990). Figure 3.2(b) shows the Hasse diagram for this
knowledge structure. We can see that F is closed under union and intersection,
so for all states S, 5" in F the following properties hold:

if 5,8 € Fthen SUS € F,
if §,5 € Fthen SNS € F.

A knowledge structure with these properties is called a quasi-ordinal knowledge
space. A one-to-one correspondence between transitive and reflexive orders and
families of (knowledge) states which are closed under union and intersection
is established by a theorem by Birkhoff (1937) (see Doignon and Falmagne,
1985).

The restriction of closure under union and intersection is very great and
somewhat unrealistic for many knowledge domains.

Therefore Doignon and Falmagne introduced, as a generalization of quasi-
ordinal knowledge spaces, the concept of knowledge spaces. Knowledge spaces
are families of states which are closed under union, but do not have to be
closed under intersection. Hence, every quasi-ordinal knowledge space is also
a knowledge space. Doignon and Falmagne showed that there is a one-to-one
correspondence between knowledge spaces and the so-called surmise-systems.
This will not be discussed in detail here. Our further considerations will deal
solely with quasi-ordinal knowledge spaces. The contributions of C. E. Dowling
and J.-P. Doignon in this volume use the more general concept of knowledge
spaces.

Quasi-ordinal knowledge spaces can also be derived from ‘special cases’ of
quasi-ordered problem sets such as sets with an antichain order or linearly
ordered sets. The following examples will illustrate these cases.

EXAMPLE 3.2.1 We have a set M = {z,y,z} with three problems. If
there is an antichain order {(z,x), (y,v), (z,2)} defined on M, the following
knowledge states can appear:

0. {} {ub {zh Az yh {2 {y, 23 {w,y, 2}

The set of these knowledge states is equal to the power set of M. Figure 3.3(a)
shows the surmise relation and the knowledge states. O

Now we will take a look at a set of problems on which a linear order is defined.

EXAMPLE 3.2.2 Suppose, we have a set M = {x,y, 2z} of three problems.
If a linear order {(z,x), (y,v), (2, 2), (y,2), (2,vy), (z,2)} is defined on M, the
following knowledge states are assumed:

0,{z}{y. 2} {z, y, 2}
The surmise relation and the corresponding knowledge states are shown in
Figure 3.3(b). 0
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O{z,y,2} O {z,y,2}
Oz Ofz,y} Ofs,z} O{y 2} Oz O{y2}
<> |
Oy UOfs} O {y} 0 {z} Oy O{z
~J] |
O = my) Oz 0O9
(a) (b)

Figure 3.3. Surmise relation and knowledge states for Examples 3.2.1 and 3.2.2.

EXERCISE 3.2.1 Show that linear orders are reflexive. Note: try to use the
given properties of the order (see Definition 3.1.4) for the proof. O

EXERCISE 3.2.2 [s the family of states

Fea = {(Z)v {:L‘}, {y}a {Z}v {w7 x}a {wv Z}, {:Ij', Y, 2}7
{w, 2y}, {w, z, 2} {w, 2,9}, {w, z,y, 2}}
closed under union? Is it closed under intersection? Check, if a corresponding
surmise relation can be found. If this is true, draw the Hasse diagram and list
the elements of the relation. O

EXERCISE 3.2.3 Which quasi-ordinal knowledge space corresponds to the
following problem structure?

Note: use Definition 3.2.1 and the fact that a quasi-ordinal knowledge space is
closed under union. The result must consist of 16 knowledge states. O

EXERCISE 3.2.4 How many possible knowledge states can be derived from
a set of 10 questions on which (a) an antichain order and (b) a linear order is
defined? O

3.3 ‘Component-based’ establishment of surmise rela-
tions

We will expand our considerations about problems by a topic we will call
problem component or simply component. One way to facilitate problem com-
parison is by systematical problem construction. Construction principles are
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applied on well-defined sets of problem components. Further, by means of their
associated component structures, we can both provide a precise description of
problems and the class of possible problem variations. Certainly, components
have to be equipped with properties which are prerequisites for a successful
combination. We will discuss this later (Section 3.3.3).

Before we introduce two construction principles, a short sketch of the con-
cept that we call a problem component should be drawn. As an example, let
us imagine we are asked to solve an algebraic problem, e. g. the multiplication
of two fractions. Although this is a simple task, we will not be able to give
the solution, if we do not know some basics of algebra. Some of these basics
may be ‘multiplication of natural numbers’; ‘division of natural numbers’ and
‘rules for the multiplication of fractions’.

These items can be seen as cognitive demands on a subject confronted with
the problem. If the subject does not have the knowledge at his or her disposal
which is ‘demanded’ or if the subject is not able to apply this knowledge, it
is supposed that the answer to the problem will be incorrect — assuming the
guessing probability is equal to zero.

3.3.1 Union and intersection based rules

Our further considerations will make use of the basics of ordering theory in-
troduced in Sections 3.1 and 3.2. We will now also take into account the
representation of problems as sets of components. The following examples will
give a first idea of how problems can be constructed from components.

ExAMPLE 3.3.1 Let C' = {a,b,c} be a set of problem components. We
assume that these components are unconnected, i.e. that an antichain order is
defined on C. Let us identify problems with subsets of C. With respect to the
antichain order defined on the components, we assume that no dependencies
between components exist. Hence, every subset of C' can be identified with a
potential problem and thus with an element of a problem set ) (in this case
subsets of C' denote problems):

Q = {0, {a}, {0}, {c}, {a, b}, {a, ¢}, {b,c} {a,b,c}}.

The combination of the components a, b and ¢ has led to seven problems.
The ‘empty problem’ () is left out, because it cannot be shown. We assume
that a problem is more difficult than another problem if it is characterized
by all components of the other problem and by at least one more component.
According to this assumption we can state a hypothetical order as shown in
Figure 3.4(a). The next step is the application of the construction to con-
crete problem components and the ordering principle on concrete problems.
For example, we define for a,b,c: a= multiplication of numbers, b= division
of numbers, ¢= subtraction of numbers. Hence, {a,b,c} is a problem which
contains multiplication, division and subtraction, e. g.
10-5

17,
5o <V
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O {a,b,c}
O{ab} Ofact Ofhel
<>
O{ey O Ofd  [ixu] 189

(a) (b)

Figure 3.4. Problem structure for the questions in () and an example concerning
calculation problems.

The hypothetical order for a set of problems is shown in Figure 3.4(b). a

We would like to stress that a surmise relation was established by construct-
ing and ordering the problems in this way. Unconnectedness, however, is not
a necessary property of the component set. As we will show, this method is
also applicable to linearly ordered and quasi-ordered component sets. Exam-
ples 3.3.2 and 3.3.3 give an idea of this method.

EXAMPLE 3.3.2 We have a set C' = {a,b,c} of linearly ordered problem
components. Figure 3.5 shows on the left a possible Hasse diagram for the
component structure and on the right the structure of the resulting problems
(components are marked by triangles). Taking into account that the elements

Aa O {a,b,¢}
R
L e

Figure 3.5. Component structure and problem structure for Example 3.3.2.

of C' are linearly ordered, only three questions can be produced. This linear or-
der may, for example, be induced by constraints on combining the components.
Such constraints exist, for instance, for sets of non-independent components.
In our example, a may be a problem component which also contains b and ¢
in some way. Therefore, if one part of a problem is associated with a, then b
and c are automatically involved. To illustrate we will assume that component
a corresponds to the addition of natural numbers within the hundreds, e.g.
619 4 347. Further, we will assume that b corresponds to the addition of the
numbers between one an ten. We therefore see that b is also necessarily an
element of a. Thus b is an element of problems containing a. O
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ExXAMPLE 3.3.3 We assume that a quasi-order is defined on a set C' =
{a, b, ¢} of problem components. Figure 3.6 shows one of the possible Hasse dia-
grams (left) and the corresponding problem structure (right). From this quasi-

O {a,b,c}
Aa (I){b,c}
/N N
Ab  Ac O {b} O {c}

Figure 3.6. Component structure and problem structure for Example 3.3.3.

ordered problem set, single-component problems can be constructed which
consist either of b or ¢, so we may suppose, that b and ¢ are thematically
independent, but are both involved in a in some way. O

After this brief introduction to one possible method of constructing and order-
ing problems by means of problem components, we will state these principles
formally:

DEFINITION 3.3.1 Let C be a set of components and < a quasi-order on
C. The component space F is the family of all subsets T' of C' for which

rel,yr=yeT
holds. O

Given a component space F¢, according to each element 7' of F¢ a problem
gr is formulated. A surmise relation R on the problem set Q = {qr | T € Fc}
is defined by the following condition:

qr R qr =T C T

This means that the problems are identified with the elements of F, while
the relation R is identified with C.

It is easy to verify that R is a transitive relation: Let M, M’ M” be sets
with M C M’ and M’ C M”. M’ which contains M is a subset of M", thus
M C M”, which means that ‘C’ is transitive (see Definition 3.1.3 (ii)).

This ordering principle of set inclusion is based on the plausible assumption
that a subject succeeding in the solution of a given problem will also be able
to solve all the partial items of this problem. We would like to note here that
a reversed statement such as “if someone is able to solve the partial items,
she or he will also be able to solve the superset item” is not expected to hold
true. The combination of problem components may lead to some additional
difficulties which might not appear within the single components. An empirical
example will be given in in Section 3.4.1.

As an ordering method, set inclusion can be applied to very different theo-
retical approaches of the field of knowledge assessment. For examples, we refer
to the investigations of Korossy (in preparation).
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EXERCISE 3.3.1 Why does the correct solution of two problems not nec-
essarily imply the correct solution of a problem which is built from the union
of components of these problems? O

3.3.2 Product formation based rules

Up until now, we have focused only on single sets of components which were
characterized by an order which was defined on the component set. In this
section, we will turn our attention to the construction of problems which consist
of components with variable attributes. Here every problem is equipped with
the same number of components. New problems are constructed by varying
the components’ attributes. The problems’ order will be derived from relations
which are defined on the set of attributes. The following example gives an idea
of this method.

ExXAMPLE 3.3.4 Let A = {ay,a9,a3} and B = {by,bs} be problem com-
ponents; aq, as,az and by, by are the attributes of these components. On both
sets A and B a linear order is defined (see Figure 3.7; attributes are marked
by black triangles).

Suppose we want to construct simple algebra problems. One component
may be the set of numbers which is used within a calculation, the other com-
ponent is characterized by the operations which are to be applied on the set of
numbers. We define: a;= use of real numbers,ao= use of integers, as= use of
natural numbers, b;= calculation of powers, bo= addition.

Both operations of B can be applied on the sets of numbers of A. Therefore,
we can construct problems which contain one property of A and one property
of B. The problem (—5)?, for instance, corresponds to the combination of as
and b;. From A and B we can construct a set J, of six problems:

fp - {(aly b1)7 (a17 b2)7 <a27 bl)7 <a27 b?)) (CL3, bl)? (a’37 bQ)}
We see that all problems of F), consist of two components which are represented
by their attributes ay,...,a;,...,a, and by, ...,0;,...,by. The problem struc-

ture for this example is shown in Figure 3.7. O
A X B (a1,b1)
/ \
A q O (az,b1) O (a1,b2)
‘ ah / \ /
Aay X l O (as, by) O (az,bs)
o N
A a; O (as,by)

Figure 3.7. Attributes and problem structure for Example 3.3.4.
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Now we must determine the principles by which these problems were con-
structed and ordered. Let us look at the steps in detail. Components are
sets of attributes. It is supposed that the attributes in a component can-
not be combined with one another. In our example we have two components
whose attributes are to be combined. This combination has been established
by forming the Cartesian product of A and B (see Definition 3.1.1). Looking at
Example 3.3.4, we can easily check that F,, is a set which contains the product
of A and B.

DEFINITION 3.3.2 Let S be a set and P a binary relation on S. (S, P) is
a partial order if for all z,y,z € S,

(i) zPx (reflexive),
(i) xzPyAyPz=xPz (transitive),
(iii) 2Py AyPr = x =1y (antisymmetric). O

In order to establish a problem structure (surmise relation) as shown in
Figure 3.7, it is necessary to compare the generated problems in pairs with
respect to the components’ attributes. Formally, the ordering rule we applied
was:

Let C...C,, be component sets on which partial orders Ry, ...,
R, are defined. On the Cartesian product Cy x ... x C), an order
=< is imposed by defining

(1, s 20) 2 (Y1, -5 Yn) <= (Vi) z; R; ;.

Expressed in words: We surmise that a problem g¢; is at least as difficult
to solve as a problem ¢y, if all attributes of ¢; are at least as difficult as
the corresponding attributes in ¢y with respect to the relations R; defined
on the attribute sets. This principle is known as ‘coordinatewise order’; for a
description see Davey and Priestley (1990, p. 18). According to Birkhoff (1973),
=< is a partial order. Note that this method is also known from decision theory
where the choice heuristic called dominance rule corresponds to coordinatewise
orders. For a more detailed discussion of parallels to choice heuristics, we refer
to Section 3.5 in this paper.

Extensions of this ordering method applied to problems of elementary prob-
ability calculus are introduced in Held (1992, 1993). Here an approach to the
component based establishment of surmise systems can also be found.

Since the attributes of the components must be compared, it is necessary
to define an order on each set of attributes. Example 3.3.4 showed the case
of linearly ordered attributes. Example 3.3.5 demonstrates the ordering of
problems which were constructed from quasi-ordered sets of attributes.

EXAMPLE 3.3.5 Let A = {ay,a9,a3} and B = {by, by, b3} be quasi-ordered
sets of attributes. Figure 3.8 shows the Hasse diagrams for these sets and the
corresponding problem structure. A procedure for the graphical construction
of such products is given in Davey and Priestley (1990, p. 19). O
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A X B a25b2) O (13,1)2 a27b3 a35b3)

\/ x \/ O (a1, b2) (az,b O (ay,b3) (a3, b1)

A Ab \\ /

ala bl

Figure 3.8. Attributes and problem structure for Example 3.3.5.

Problems which were constructed by product formation can also be ordered
lexicographically. Lexicographic orders are also known from decision theory
(see e.g. Fishburn, 1974).

ExaMPLE 3.3.6 As in Examples 3.3.4 and 3.3.5, we have two components
A = {ay,a9,a3} and B = {by,by}. It is assumed that component A is ‘more
important’ than component B. Figure 3.9 shows the lexicographic order of the
product A x B. How was this order established? First, we will describe the

A X B O (a1,b1)
A aq O (alabQ)
o
Ady X ‘ O (az,b1)
L
A a3 O (az,b9)

O (a3, b1)
O (a3, b2)

Figure 3.9. Lexicographic order.

general principle. The n-tuples which are to be ordered are compared pairwise
beginning with the first elements (here: a;). Since it is assumed that A is
the most ‘important’ component it is also assumed that if these elements are
not identical, the n-tuple which contains the subordinate element with respect
to the order on A is subordinate to the other n-tuple. In Figure 3.9 we see
that this is the case for all tuples (a1, b;) and (ag,b;). If the first elements are
identical, the second pair of elements will be compared and the n-tuple with the
subordinate element is subordinate (see all tuples (a;,b;) and (a;, by)). This
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procedure which is known from dictionaries continues on until two different
elements are found or until there are no more elements left to compare. O

Now we will describe the lexicographic ordering in a formal way and prove
that it imposes a linear order on a problem set (i. e., the proof of transitivity is
shown below, while proving reflexivity and connectedness is left to the reader
as an exercise).

For establishing a lexicographic order we need sets A; of attributes and
relations P; which are defined on the sets A;. (A;, P;) with i = 1,...,n have
to be strict linear orders.

DEFINITION 3.3.3 Let A be a set. A strict linear order on A is a binary
relation P, such that for all a,b,c € A,

(i) —(aPa) for alla € A (irreflexive),
(i) aPb A bPc = aPc (transitive),
(iii) foralla#be A, aPb vV bPa (weakly connected). O

DEFINITION 3.3.4 Let (A;, P),i =1,...,n, be strict linear orders. (A; x
AQX XAn,Q> Wltth ((Al XAQ X ...XAn) X (Al XAQX XAn)) is
a lexicographic order, i.e. for

(CLl,CLQ,...,an>,(bl,b2,...,bn) € Al X A2 X ... X An
holds

(ay,a9,...,a,) Q (b1,ba,...,0y)
if and only if,
a1 Piby Vo (a3 =by A agPyby) V (a1 =by A ag=by A azPsbs) V ...
SV o(ar=by AN ag=by A ... A Gpo1 =byor A a,Poby)
Ve =0b Na=by A ... N a,="b,). O

PROPOSITION 3.3.1 A lexicographic order is transitive. a

PROOF. Let (ay,a,...,a,) Q (b1,be,...,b,) and (b1, ba,...,b,) Q (c1,c2,
S Cn) With (aq, ... a,), (b1, ..., b)), (c1,...,cn) € Ay X... X A,. Without loss
of generality we can assume 3i € {1,...,n} (a; Zb;) AN Ji € {1,...,n} (b; #
¢;). Then there exists an ¢ € N, 1 < i < n with a;Pb; and a; = by for
all k € Nk <i4,andaj €N, 1 <j <n with b;Pjc; and b = ¢ for all
leEN, I <.
Let m = min{i, j}. Then:
A = by A by P [if m =j] or
U Prby N by = ¢y [if m =] or
Ay Pl A by Py, [if 1 = ]

and also a, = b, = ¢, for all ¢ € N,q < m; so a,,Ppc,, and ay = ¢, for all
q €N, q¢ < m. Therefore, (aj,as,...,a,) Q (c1,¢2,...,¢pn) [ |
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We have now introduced several important concepts for the construction of
problems from components and for the establishment of a surmise relation on
these problems. In the following section we will summarize aspects of compo-
nent properties.

After these considerations we will present two empirical investigations which
make use of the principles introduced for constructing and ordering problems.

EXERCISE 3.3.2 Form the product M; x My x Mjs of the following sets:

My = {ar, a2}, My = {b1,bs,b3}, M3 = {c1,c2}. O
C X D
. A°3 A d3
EXERCISE 3.3.3 Give the problem structure for / \ " / \
the product of the attribute A AC, Ao Ad
1 2

sets C' and D. -

EXERCISE 3.3.4 Prove that a lexicographic order — as introduced in Def-
inition 3.3.4 — is reflexive and connected. O

3.3.3 Comments and reflections on the concept of problem compo-
nents

It is evident that the utility of the rules for problem construction depends
largely on the properties of components. The selection of suitable components
and attributes is surely the most important prerequisite for the application of
our approach.

The examples in Sections 3.3.1 and 3.3.2 showed some simple types of com-
ponents, by which the general rules for combination were demonstrated. We
must be aware of the fact, however, that problems which are presented to a sub-
ject during an examination procedure do not consist solely of elements which
are directly related to the considered knowledge domain. The way in which a
question is phrased, for instance, may influence the problem’s difficulty. An-
other variation in complexity can be caused by the way in which prerequisites
for the solution are presented.

We will not be able to provide an exhaustive list of factors which can
potentially influence the difficulty of problems. We will, however, present a few
comments and examples which should serve as a basis for further reflections.
We will begin with a simple example.

ExAMPLE 3.3.7 We are going to construct some simple problems, con-
cerning elementary algebra. The components at our disposal are domain of
numbers with attributes (1) use of real numbers, (2) integers, and (3) natural
numbers, respectively operations with (1) calculation of powers and (2) addi-
tion as attributes (see Example 3.3.4). A problem which is constructed by ‘use
of natural numbers’ and ‘calculation of powers’ (in terms of Example 3.3.4,
this is problem (a3, b1)) may look like the following:
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Problem a: 122 =z
or

Problem b: Mr X is playing roulette at the casino. He starts playing
with a total amount of $ 12. After five hours, he has as much money
as his starting amount to the power of three. How much money does
he own now? O

This example attempts to give an idea of the superficial differences between
problems which contain the same components with respect to some knowl-
edge domain. It seems plausible that these formal aspects can contribute to a
problem’s difficulty.

We know that complete problem sets can be built by systematically com-
bining the components taken from one or more component sets. It is clear that
components cannot be selected arbitrarily. Restrictions on combinations are
likely to arise if dependencies between components which may lead to unwel-
come results exist. The following two examples will give an impression.

ExAMPLE 3.3.8 We are going to construct another problem from the com-
ponent properties introduced in Example 3.3.7: a combination of ‘use of real
numbers’ and ‘calculation of powers’. One of the possible problems may
be © = —23. There are two main difficulties with this problem: (1) for
—23 = /=2, this problem involves the calculation of roots and (2) the re-
sult of /=2 might — as a complex number — not belong to the domain of
numbers we are considering. O

EXAMPLE 3.3.9 Suppose we must compare two problems, constructed from
the following component properties:
Problem 1: (calculation of fractions, division, domain: real num-
bers)
Problem 2: (calculation of fractions, domain: real numbers)
In this case, ‘calculation of fractions’ and ‘division’ are not independent
because in a large class of problems on fractions division has to be performed.
(I

Another difficulty may arise when we look at the ‘differences’ between the at-
tributes of a component. The question is how similar attributes should be
treated. If the difference between some of the attributes does not seem to in-
fluence the difficulty of problems to a meaningful extent, the consideration of
‘threshold values” might be appropriate. From the area of decision theory the
lezicographic semi-order introduced by Tversky (1969) is well known. Accord-
ing to this rule the ‘better’ of two alternatives is preferred, if the alternatives
differ by more than some threshold. The problem with this rule, however, is
that it may lead to intransitive results. The result is not necessarily intransi-
tive, but it must in all cases be checked for transitivity. For a more detailed
discussion of the application of choice heuristics within our ordering approach
see Section 3.5.
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3.4 Empirical examples

Our two empirical examples report on experimental investigation which make
use of the methods introduced for problem construction and problem ordering.
The first investigation belongs to the area of psychology of thinking. It deals
with the solution of chess problems. In the second experiment we focus on
types of problems related to the field of inductive reasoning: the continuation
of number series.

3.4.1 Construction and solution of chess problems

Chess playing is surely one of the most complex and demanding knowledge
domains. This complexity makes the domain particularly interesting for cog-
nitive scientists and psychologists. Not only the game of chess itself, but also
the construction of chess problems requires a large amount of knowledge and
experience. The immense number of possible moves which can be made even
from a very simple constellation, makes the decision, whether one move is bet-
ter than another very difficult. Grandmasters are often unable to ‘proof’ what
move is the best in a particular situation; therefore they have to act intuitively.

An important book about the psychology of chess playing was written by
De Groot (1965). He attempts to investigate the thought processes of highly
trained chess players by means of introspective methods. De Groot also pro-
vides a proof scheme for objectively solvable positions, but the proof only
works, if someone is able to differentiate between ‘good’ and ‘less good’ moves.
This differentiation has, for complex positions, to be intuitive.

We can already see that for the construction of chess problems, we should
not attempt to focus on such demanding constellations which in addition to
requiring highly evolved skills are also very time consuming. In our example,
we use the classical form of ‘three move problems’ which are familiar to every
chess player. In Figure 3.10 we provide a typical example. The task is to

Figure 3.10. A typical three move problem.

show the moves to reach a ‘winning position in three moves’. Supposing white
starts, the solution is: 1. Be2 h1Q; 2. Bhb+4+ Qhb:; 3. Ng7+. Experienced
chess players can show that for this type of problems there is only one optimal
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solution. Further, the time needed for handling such a position is expected to
be much shorter than for a complex constellation in a real chess game.

As a next step, we have to find a way for the construction of such prob-
lems. Before we can apply one of our construction rules (see Sections 3.3.1
and 3.3.2), components have to be introduced. A basic concept in chess play-
ing are ‘motives’ which are tactical standard situations. In terms of problem
solving, motives can be seen as ‘subgoals’ of a problem’s solution. Figure 3.11
shows examples for positions in which the motives ‘fork’; ‘pin’, ‘guidance’; and
‘deflection’ occur.? To illustrate we will give a short description of these special

Fork

Guidance Deflection

Figure 3.11. Positions in which the motives ‘fork’, ‘pin’, ‘guidance’, and ‘deflection’
occur.

situations:

e Fork: One piece simultaneously attacks two opposing pieces of higher
value. Solution:* 1. Nc¢7 Rg6/c6; 2. Nd5+ arbitrary®; 3. Ne7+/Neb+. If
we take a look at one of the possible final positions (Black: K5, Rc6,
... White: Ne7, ...), we see that White’s Knight attacks both Kf5 and
Rc6.

3The example positions are identical to problems of the experimental investigation.
Therefore these examples may appear to be rather complex.

4The ‘solution’ provides the sequence of three moves which a chess expert has considered
as optimal for reaching a winning position.

5¢Arbitrary’ means that this move (in this case Black’s move) is not relevant to the
solution.
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e Pin: An opposing piece is prevented from moving. Solution: 1. Qf8+
Qe8; 2. Rd1+ Rd7; 3. Be7:4. We see that the black Bishop cannot move
away from e7 because of Bf6+.

e Guidance: An opposing piece is forced to a disadvantageous square. So-
lution: 1. Kb6 Bab+/ch+; 2. Kabcb arbitrary; 3. Qb7/c6 mate; Black’s
Bishop is forced to ... ab+/c5+, otherwise 2. Qb7 mate.

e Deflection: An opposing piece is forced to leave an important line or
square. Solution: 1. Be8 Bdb; 2. Bfs: Bb7; 3. Be4. Black’s Bishop is
forced to leave e6, otherwise 2. Be6: ...

Motives can appear in a large variety of combinations and belong to the basic
repertory of even only moderately experienced chess players. A complete list
of all problems used in our investigation can be found in Table 3.6 in the
appendix.

For the construction of problems, these motives present one possible type
of problem components. As a principle of construction, we will select a small
number of motives and then produce three move problems which contain com-
binations of them. In the following an investigation which makes use of this
idea, will be reported.®

Problem construction and hypothesis As we have already indicated,

the construction of problems and the establishment of the surmise relation are

based on the combination of motives. The motives — symbolized by a, b, ¢ and

d — are elements of a single component set C'. We assume that an antichain

order is defined on C'. Hence, the principle of set inclusion can be applied.
The component space F¢ (see Definition 3.3.1) is as follows:

Fo= {0.{a},{b},{c}, {d},{a b} {a,c},{a,d} {b c} {b,d},
{¢,d},{a,b,c}, {a,b,d},{a,c,d},{b,c,d}, {a,b, c d}}.
By means of the ordering principle of set inclusionas introduced in Section 3.3.1
we can infer a surmise relation R on the set () of problems which are identified
with the elements of Fo. Figure 3.12 shows this relation as a Hasse diagram.
Expressed in words, the hypothesis for the investigation is:

If a problem q identified with a component setT' € F¢ is solved by a
subject, then all problems ¢ which are identified with a component
set T" € Fo with T C T will also be solved by this subject.

Concerning solution frequencies we expect that none of the problems will be
solved more frequently than each of the corresponding subordinate problems.
If, for example, problem {a, c} is solved by n subjects we expect for problems
{a} and {c} solution frequencies which are greater or equal to n.

EXERCISE 3.4.1 Suppose the data obtained in an experimental investiga-
tion are fully congruent with the expectations concerning solution frequencies.

5The investigation was conducted in 1988 by B. Hierholz at the University of Heidelberg
under direction of the first author.
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O {a7 b’ C? d}

7 N

O {a,b,c} O {a,b,d} O {a,c, d} O {b,c, d}

S =

O {a,b} OA{a,c} O{a,d} O{b,c} O{bd} O {cd}

|

O {a} O {6} O {¢} O {d}

Figure 3.12. Hasse diagram for the problems identified with the elements of the
component space Fg¢.

Does this fact indicate that the data are also congruent with the surmise rela-
tion? Give reasons for your answer. O

Method For the investigation, four motives were selected and combined as
shown in Figure 3.12. These motives are once again ‘fork’, ‘pin’, ‘deflection’
and ‘guidance’. The combinations of these four motives form 15 problems
with the problem containing all four motives being the most difficult one. A
complete list of the problems is given in Table 3.6 in the appendix. Figure 3.13
shows a problem with the motives ‘fork’; ‘pin’ and ‘deflection’ (for the solution
see problem 4 of Table 3.6 in the appendix). The positions of Figure 3.11 are
examples for the problems with one motive.

These problems were presented to 13 subjects who are all members of the

Figure 3.13. Example for a problem (motives a, b, c).

chess club in Ladenburg, Germany.

First, the subjects were asked to read the instructions for the experimental
procedure, then they were permitted to begin working on the problems. Each
problem was printed on a single card as a diagram (see Figures 3.10, 3.11
and 3.13). The subjects had to write down the solution in the usual form.

The time, needed for the solution was controlled by the subjects themselves
with the aid of a chess clock. There was no time limit. The subjects were asked
only to answer ‘as accurately and as quickly as possible’. The problems were
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presented in the order of hypothesized difficulty, so problem {a,b,c,d} with
four motives was the first to be presented and the one motive problems {a},
{b}, {c}, and {d} were the last to be presented.

Results Figure 3.14 shows the total solution frequencies for all problems.
We can see that several contradictions to our assumption concerning solu-
tion frequencies arose. Problem {c, d}, for example, was solved less frequently
than the (hypothetically) most difficult problem {a, b, ¢,d}. Figure 3.15 (solid
circles denote correct answers, open circles denote incorrect answers) demon-
strates structures for both an ‘inconsistent’ (1) and a ‘consistent’ subject (2).

06

//\\

O 12 O 11 O 10

1>%2<l

O 10

1%%%&1

O 11 O 11 O 11

Figure 3.14. Chess problems: solution frequencies.

Table 3.1 shows the results for the 13 subjects, ‘4’ stands for a correct and ‘-’
for an incorrect answer. Note that in this table the problems are named by the
symbols for the associated motives, i.e. the problem identified with {a, b, ¢, d}
is named ‘abed’.

If we look at the hypothetical problem structure (Figure 3.12), we can see
that the hypothesis holds only for the three subjects (2, 4, 5), who solved
all problems and for subject 3 who failed only in solving problem {a, b, ¢, d}.
Subjects 7 and 10 each show inconsistencies for only one problem.

Discussion The results clearly contradict our deterministic hypothesis, since
the response patterns of only four subjects agree with it.

The reasons for the unsatisfactory results may be found both in the theo-
retical approach and the experimental design. First of all, the difficulty of the
chess problems is probably not solely influenced by the type and number of in-
cluded motives. An investigation by Albert, Schrepp, and Held (1993) showed
that taking the sequence of motives within problems into consideration can
contribute to a more adequate problem structure.

Another problem is common to investigations dealing with chess playing is
that the work on chess problems requires great concentration over a large period
of time. Thus we suspect that the order of problem presentation (beginning
with {a, b, ¢, d}) might not have been the best choice.

The experimental setting as a group experiment and the lack of a limit
on solution times may have caused a decrease in motivation with some of the
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(1) ® {a b,cd}
® {ab,c} ® {u b, d} ® {a,cd} O {b,c,d}

® {a,b} @ {a,c} ®{a,d} O {b,c} ®{b,d} O {c¢,d}

P =

O {a} O {b} O {c} ® {d}
® {ab,c} ® {u b, d} ® {a,cd} ® {b cd}

P —d

® {a,0} ®{a,c} O {ad} @®{bc} O {bhd} @ {cd}

® {a} ® {v} ® {c} ® {d}

Figure 3.15. Chess problems: individual results of two subjects. Solid circles

denote correct answers, open circles denote wrong answers.

Table 3.1. Chess problems: correct and incorrect answers

Sub- Problem

ject abcd bed abc acd abd bc ad bd ac cd ab d ¢ b a
1 + -+ + + -+ + + -+ + - - -
2 + + + + + + 4+ + + + + ++ + +
3 - + + + + + 4+ + + 4+ + ++ + +
4 + + + + + + 4+ + + + + ++ + +
5 + + + + + + 4+ + + + + ++ + +
6 + + + + + + 4+ ++ -+ -+ + -
7 -+ + - 4+ + 4+ + - + + ++ + +
8 -+ + + - + + 4+ + - - + + + -
9 - - - 4+ - + - - - - - + - + +
10 -+ + + + + 4+ + + - + ++ + +
n + - + 4+ + + + + + - + + + + -
12 - + + - + -+ - + - + -+ + +
13 - + + - + -4+ + - - - ++ -+

subjects who required longer solution times. Further, the problem set was
possibly too inhomogeneous for some of the subjects. The degree of familiarity
with a specific problem type may also influence the solution process.
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In the investigation of Albert, Schrepp, and Held mentioned above, these
problems were taken into account. A computerized experimental laboratory
setting was used. Further, the uniqueness of motive assignment was optimized.
Due to these improvements the results of this investigation are much more
conclusive than the ones reported here.

3.4.2 Continuing a series of numbers

Our second empirical example deals with a type of task which is commonly
found in diagnostic instruments in psychology.” It is typical vor inductive
reasoning. A series of numbers constructed according to an algebraical rule is
to be continued by one or more numbers. Subjects are required to infer the
rule from the number series presented and to calculate the missing number
with the help of this rule. The following example demonstrates a very simple
task:

30 32 36 44 60 ... 7

One possible rule is: x, = x,_1 + 2™. Of course, we can find other formulas
which correspond to the example, e.g. z, = 3z, 1 — 2x,_2, Where x,, is the
number, we are trying to find, x,_; is the preceding number (here: 60), and
so on. Our example shows that both formulas use preceding elements of the
given series for the calculation of z,. We will call the number of immediate
predecessors which are used for the solution of the problem level of recursion.
The first formula has recursion level ‘1’, the second is of level ‘2’. Krause
(1985) used this type of recursively connected number series in an investigation
of mental processes and rule detection. He attempted to classify the various
methods subjects use to solve this type of problem.

Some types of number series problems possess properties which make them
suitable for our component based method of problem construction. The level of
recursion is one of them. Generally, we assume that the following cognitive de-
mands are covered by number series problems: (1) the subject has to recognize
properties and regularities of the presented sequence (e.g. the level of recur-
sion), (2) a hypothesis concerning the underlying rule has to be established,
applied and tested.

Problem construction and hypothesis Number series problems are ex-
tremely variable, so the question is, what types of components can be combined
in which ways. In this investigation, three distinct components M, My, M3
were used. Their attributes are shown in Table 3.2. Concerning attributes b,
and ¢y, we must note that the definition of the factors f = 1 and g = 0 is
included for ‘technical’ reasons: although a recognition of a multiplicative or
additive factor is not necessary for a solution of the problems which are char-
acterized by by or co, giving such ‘zero values’ is appropriate for a complete
problem definition. We assume that a linear order is defined on the attributes

"The investigation was conducted in 1989 by P. Hellriegel, J. Ptucha and M. Wélk at the
University of Heidelberg under direction of the first author.
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Table 3.2. Number series: problem components

Components Attributes
Ml al ag asg
level of rec.: 3 level of rec.: 2 level of rec.: 1
M, by b2
multiplicative factor —multiplicative factor
f>1AfeN f=1
M3 c1 Cc2
additive factor additive factor
g>1ANgeN g=0

of each component. The Hasse diagrams of Figure 3.16 (left) illustrate this fact.
This assumption means that, for example, recursion level 3 makes a problem

AML X J\/['g X J\/Ig al,bl,cl)
Aq /'\
(1‘7 bl,cl) al,bl,m al,bg,cl)
A Dby A cy

Aay X o />><><

(13 bl,cl (1‘7 bl,c'v [1‘7 b‘v , C1 O al,bg,(}g
‘ A 1)2 A Co ) ) )
A s )><><)/

ag bl,(}‘v aS b2 Cl)

\/

not presented

Figure 3.16. Number series: Order of attributes and problems.

more difficult than recursion level 2, or the existence of a multiplicative factor
which is greater than 1 provides more complication than factor 1.

Now we must find a problem construction rule for these components. In
Section 3.3.2, we demonstrated how product formation can be applied to sets of
components. We will apply this rule to My, My, M3. The product M7 x My x M3
provides twelve combinations of attributes of the type (ay, by, ¢,). We will call
the set of these combinations problem set Q).

The next step is the application of the coordinatewise ordering rule as
described in Section 3.3.2. This leads to the structure of the twelve problems,
where problem (aq,by,c1) is assumed to be the most difficult and (as, by, ¢2)
the simplest. Table 3.3 shows the complete problem set. On the right side of
Figure 3.16, we can see the problem structure.

The construction and ordering of the number series problems which was
based on product formation and coordinatewise ordering is the motivation for
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the investigated hypothesis:

If a subject solves any problem included in QQ;, then this subject
is capable of solving all subordinate problems with respect to the
postulated problem structure.

Method As already mentioned, the problems were constructed from three
components: recursion level, multiplicative constant and additive constant.
The multiplicative constant is either 2 or 0, the additive constant is always
a single- or two-digit element of N, the maximal recursion level is 3. To
avoid successful guessing of the solution, all solutions are numbers greater than
100. Table 3.3 shows all calculation rules and the corresponding problems.

Table 3.3. Number series: calculation rules and problems

Attributes c1 C2

by Tp =2Tp 3+ Tp2+Tp1+4 Tp=2Tp 3+ Tp2+Typ_1

a 1,5,9,20,43,85 = 172 6,6,7,25,44,83 = 177
b2 Tp =Tp-3+Tp2+Tp1+1 Tp = Tp—3 +Tp—2+ Tn—1
16,16,17,50,84, 152 = 287 26,34,41,101,176,318 = 595
by Tp = Tp—2+2Tp_1+2 Tp = 2Tp_2 + Tp_1
as 1,4,11,28,69,168 = 407 5,11,21,43,85,171 = 341
b2 Tp = Tp-2+Tp-1+9 Tp = Tp—2 + Tn-1
12,17,34,56,95,156 = 256 25,34,59,93,152,245 = 397
b1 Ty = 20p—1 +1 Ty = 2Tp—1
as 7,15,31,63,127,255 = 511 4,8,16,32,64,128 = 256
b2 Tp = Tp-1+13 Tn = Tp—1

33,46,59,72,85,98 = 111 113,113,113,113,113 = 113
(not presented!)

Problem (ag, ba, o) was not used for the investigation, because it is not really a
‘problem’ and would possibly have confused the subjects. Before the remaining
eleven problems were presented, the eighteen subjects, who took part in the
investigation, were asked to read instructions which introduced the problem
type. The subjects were also told that the only mathematical operations to be
used were addition and multiplication. Then they were asked to solve three
simple example problems.

The problems of our structure were then presented in a randomized order.
The subjects had to write down the solution on a sheet of paper. If the solution
was not given within seven minutes, the next problem was presented. Subjects
who either gave the wrong solution or wanted to ‘give up’ before the seven
minutes had expired, were asked to go on thinking about the problem. After
the last problem the subject was asked for the rules he or she used for solving
the problems.
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Results Figure 3.17 shows the total solution frequencies for each problem in
the structure. In Figure 3.17, we can see that two problems were solved by all

00
015/ (l)?<o?< (l) 10
=]

not presented

Figure 3.17. Number series: solution frequencies.

subjects and three problems were solved by no subject. In not one case was a
subordinate problem solved less frequently than a superordinate problem.

The results of only two subjects (13 and 15) do not correspond to the hy-
pothesis. In these cases, the set of solved problems is not an element of the
postulated quasi-ordinal knowledge space. The result of one of these subjects
(15) and that of the ‘non-contradicting’ subjects 1 and 5 can be seen in Fig-
ures 3.18 (1) and (2). Table 3.4 shows the results for the 18 subjects; ‘4’ stands
for a correct and ‘" for an incorrect answer.

Discussion The results of this investigation show that the hypothetical con-
clusions we drew about the coordinatewise ordering rule were rather accurately.
Our structure corresponds to a total number of 49 knowledge states, where the
cardinality of the power set of the problem set is equal to 1024. Therefore,
only 4.8 % of the potential response patterns are states with respect to the
structure.

An alternative and ‘more economical’ theory for the data could be stated
by a lexicographic order on the problem set. For this purpose we assume
that component M; (recursion level) is the ‘most important’ component, Mo
(multiplicative factor) the second most important and Mj the least important
component. With respect to this order, none of the observed response patterns
agrees with a state. In this case, only 11 knowledge states are assumed to exist
— this is 1.1 % of the potential response patterns. Although the lexicographic
order is much more ‘restrictive’ than the coordinatewise order, these results
may also be a product of the assumption concerning the importance of the
components. The analysis of other possible lexicographic orders is left to the
reader as an exercise.

We assumed that a subject, who is able to solve a problem, will use one
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Figure 3.18. Number series: individual results of two subjects. Solid circles denote
correct answers, open circles denote incorrect answers.

particular calculation rule. This is not always realistic, because for every num-
ber series problem, alternative solutions can be found. These alternatives are
frequently also plausible. The next section deals with alternative solutions.

Ambiguity of number series problems In correspondence with problem
construction, the calculation rule for the series 5,11, 21,43,85,171,...7is x,, =
2x,_9 + x,—1. This is problem (ag, by, ). We can easﬂy see that the rule
T, = 2x,_1 + (—1)" will also provide a correct solution.

Although the subjects were told that only positive constants are to be added
in the problems, we cannot exclude the possibility that a subject will use such
an alternative rule. In the reported investigation, eleven subjects provided
a correct answer, whereby eight subjects used the alternative rule as shown
above.

We can see that the construction and ordering of number series problems
must be based on an exact analysis of the problems’ uniqueness, especially if
the problems are constructed from components which include principles of so-
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Table 3.4. Number series: correct and incorrect answers

Subject Problem

£ 85558888 58

£ & s EEE S E &
1+ - 4+ o+ -+ o+ -+
e T e S S
3 4+ 4+ + + -+ + -+ - -
e e S
5 4+ -+ 4+ -+ + - 4+ - -
6 + + + + - + + - + - -
T+ + + + -+ o+ -+ - -
8 + - + + - + - - + - -
9+ 4+ + + -+ + - o+ - -
0 + + 4+ - - + - - 4+ - -
11+ + + - -+ + - o+ - -
12 4+ + 4+ - - + 4+ + + - -
B - - o+ o+ -+ - -+
4+ + + - - + 4+ o+ - - -
I e T
6 + - 4+ - - 4+ + - 4+ - -
O e e
18 4+ - 4+ + - + - - 4+ - -

lution. Korossy (1990) examined the phenomenon of ambiguous number series
problems with special reference to the case of linear recursive series. He devel-
oped a method, which allows the uniqueness of the solution to be determined.
This method is based on the theory of linear equation systems. Omne of the
main results of his study is that only heavy restrictions on the domains of the
recursive formulas lead to less ambiguous ranges for the solutions.

As an overall conclusion, we can say that it is impossible to construct
number series problems which have only one correct solution. However it is
possible to minimize the number of alternatives to a degree which allows one to
work with this type of problem. Further, if the manner in which an ambiguous
problem has been solved is known, it may be possible to infer which of the
assumed cognitive demands has been mastered by the subject.

EXERCISE 3.4.2 With respect to the coordinatewise order of the number
series problems, two response patter have been observed which do not cor-
respond to our hypothesis. For each of these patterns identify the problems
which do not conform to the hypothesis. O

EXERCISE 3.4.3 Draw the Hasse diagram for the lexicographic order corre-
sponding to the hypothesis of component importance stated above (M;: most
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important; My: second most important; Mjs: least important). For each sub-
ject determine the number of correct or incorrect answers given which do not
comply with the hypothesis. a

EXERCISE 3.4.4 Consider the following assumptions concerning the im-
portance of the components of our number series problems:

most important second most important least important
M, M, M;
My M3 M,

Draw the Hasse diagrams for the lexicographic orders corresponding to
these assumptions. Check the agreement of the resulting knowledge states
with the data of the number series experiment. O

3.5 Relation to decision theory

As we have already noted in Section 3.3, the rules introduced for problem con-
struction are closely related to the concepts of choice heuristics from decision
theory. In the following, we will demonstrate that comparable mathematical
structures can be relevant for different areas of psychological research (i.e.
psychology of knowledge and decision theory). Further it will be shown that
an area such as decision theory provides approaches which are also suitable
for application in the field of knowledge assessment. However, it will be illus-
trated that not each of the known choice heuristics can be applied to knowledge
assessment.

Therefore, we will give a brief introduction to some basics of choice heuristics®
and we will illustrate parallel aspects of the formal description of choice be-
havior and the ordering of systematically constructed problems. We will focus
on the preference relation defined on a set of alternatives
indexalternative, -s, and on the surmise relation defined on a set of problems.
We will first take a look at a typical decision problem.

ExaMPLE 3.5.1 Consider, someone would like to buy a new car. The
dealer offers five different models with attributes as shown in Table 3.5. The
customer now has to decide which of these five cars is the most suitable. O

With the help of this example we will introduce some of the basic concepts for
the representation of a decision task.

First we need a set A = {a,b,c,d,...} of alternatives. In our example
this is A., = {carl, car?2, car3, carj, car5}. These alternatives may be

8A detailed introduction to the mathematical aspects of decision theory can be found
in Fishburn (1972). A number of different choice heuristics is formalized in Aschenbren-
ner (1980,1981).
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Table 3.5. Examples for alternatives described by the attributes on
five dimensions

Alternatives Dimensions
Viaz fuel length luggage purchase
consumption space price

Car 1 100 mph low 42m  1.6m?  $22,000
Car 2 140 mph medium 45m 14m3  $24,000
Car 3 90 mph low 41m 1.2m?  $18,000
Car 4 120 mph high 50m  1.9m?®  $21,000
Car 5 115mph  medium 48m  1.6m®  $30,000

characterized by dimensions. D = {dy,ds,...,d;,...,d,} is the set of dimen-
sions. The set Do, = {Vinaz, fuel consumption, length, luggage space, purchase
price} is known from Example 3.5.1. Every dimension d; is a set of attributes:
d; = {di,d;a,...,din}. The dimension V.., for example, has the attributes
100 mph, 140 mph, 90 mph, 120 mph, and 115mph as elements. An alternative
x can be treated as n-tuple: x = (z1,z9,...,%,), where x; ...z, are attributes
of the dimension d; which belongs to alternative x. For example: car?2 =
(110 mph, medium fuel consumption, 4.5m, 1.4m?, $24,000).

Let us take a look at a decision experiment in which all possible pairs of
alternatives (including the pairs which consist of identical alternatives) in all
possible sequences are presented to the subjects. The question to the subjects
is: “Is the first of the presented alternatives at least as attractive to you as the
second alternative?”

The fact that alternative x is preferred to alternative y is denoted by the
preference relation Pr. Therefore, we can write xPry for the preference of
alternative = to y regarding rule R. The properties of this relation Pg depend
on the choice heuristic R used that establishes the preference relation and on
the manner in which the subject is asked (see Exercise 3.5.2). Because the
preference of alternatives is based on the preference of attributes, the applica-
tion of a choice heuristic requires the existence of a ‘preference order’ on each
dimension.

Two choice heuristics have, in principle, already been introduced in Sec-
tion 3.3: the dominance rule and the lexicographic rule. The definitions of
these rules are analogous to those given in Section 3.3 (p.88 and p.90). We
can therefore omit them here.

EXERCISE 3.5.1 Take a customer who decides according to the dominance
rule. If we consider comparisons between car 1 and car 2 and between car 2 and
car4, which cars will be preferred by this customer? O

EXERCISE 3.5.2 Consider a choice experiment in which questions of the
following type are asked: “Is the first of the presented alternatives more at-
tractive to you than the second alternative?” In addition is assumed that the
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subjects answer in agreement with the dominance rule. Which property of a
quasi-order may as a result of the manner of questioning not be met by the
resulting preference relation? O

Another well known choice heuristic is the majority rule.

DEFINITION 3.5.1 A choice heuristic M is a majority rule if and only if
rPyy < card(X;) > card(Yy),

with x and y alternatives, X, the set of dimensions with preferred attribute
in x and Y, the set of dimensions with preferred attribute in y. card(X,) is
the cardinality of the set X . O

EXERCISE 3.5.3 We refer to Table 3.5 on page 106. Suppose that the
alternatives = (=car1) and y (= car2) are to be compared by a customer who
prefers small fast cars which have low fuel consumption, are equipped with a
large luggage space, and are inexpensive. Further, we assume that the customer
bases his or her decision on the majority rule. Which of the alternatives = and
y will be preferred by the customer?

The customer then compares alternatives y (= car 2) and z (= car4). Which
one will be preferred in this case?

Next we will determine whether P, is a transitive relation. For this purpose
suppose that P, is transitive. Which decision by the customer can as a result
of this assumption be inferred from the decisions stated above? Check the
inferred decision by comparing the attributes provided in Table 3.5. What
conclusion can be drawn concerning the transitivity of Pj,? O

If attributes of different components are comparable (i.e., if it is possible to
state that attribute a; is more difficult than attribute b;), then rules such as
the minimax heuristic and the mazimax heuristic (see Svenson, 1979; Huber,
1982) may be appropriate for knowledge assessment.

Decision theory offers the advantage of a well developed inventory of prop-
erly formalized choice heuristics which are potential candidates for problem
ordering rules. As general principle, choice heuristics do not necessarily im-
pose a surmise relation on a problem set. It can, however, be determined
whether the properties of such a relation are met.

3.6 Summary

In this article, methods for the generation of ordered problem sets are intro-
duced. Our theoretical results are motivated by the theory of knowledge spaces
which was introduced by Doignon and Falmagne (1985). A basic concept of
this theory is the surmise relation, a transitive and reflexive binary relation
defined on a set of problems. By this relation, a set of knowledge states (i.e.
subsets of the problem set) is determined. Although the step from surmise re-
lations to the more general concept of surmise systems is the main achievement
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of the theory of knowledge spaces, we restrict our considerations concerning
this theory to surmise relations.

The question we are focusing on is how surmise relations can be derived
from a systematically constructed set of problems. Both problem construction
and problem ordering are based on domain specific theories which are prerequi-
sites for the definition of problem components and the establishment of problem
structures which are derived from these components.

Problem components may, for example, be operations necessary for a prob-
lem solution or subgoals during the solution process.

The methods introduced for the establishment of ordered problem sets are
in principle known from elementary ordering theory: set inclusion and compo-
nentwise ordering of product sets.

In the experimental investigations, we show applications of the methods
introduced for problem construction and problem ordering. The first investiga-
tion deals with the domain of problem solving. Chess problems are constructed
on the basis of motives. These tactical elements of the game of chess are viewed
as subgoals for the solution process. A surmise relation on the problem set is
established by inclusion of motive sets. The second investigation belongs to
the domain of inductive reasoning with the solution of number series problems.
Problem construction is done by product formation. The surmise relation is a
result of the componentwise ordering of products. In this case, the components
are parts of the rules which have to be found for problem solution.

Additionally, we show that parallels exist between the ordering principles
introduced and choice heuristics known from decision theory. The applicability
of these heuristics to knowledge assessment is discussed.

In the meantime, further principles for the establishment of knowledge
structures which are based on problem components or skills have been de-
veloped. Lukas and Micka (1993) consider the assignment of skills to elemen-
tary chess-endgame problems. In Lukas (1991) misconceptions for the solution
of problems on basic electricity circuits are modeled by information systems.
This approach also focuses on incompatibility relations between skills. These
results are also important for the definition of component based problems as
introduced in this article.

The investigations of Korossy (1993) are based on modeling competencies
and performances within assessment processes. The domain under investiga-
tion is the field of geometric constructions and calculations. In Held (1992,
1993), (quasi-ordinal) knowledge spaces are derived from component based
problems on elementary combinatorics and probability calculus. Some of the
theoretical approaches introduced there are extensions of the methods of this
paper. Further, the assignment of ‘problem demands’ to problem components
is discussed.

Albert, Schrepp and Held (1993) provide the principle of sequence inclusion
for ordering motive based chess problems. This method is an extension of set
inclusion which has been used for the chess experiment reported here.
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Appendix
Table 3.6. Complete list of chess problems.
Number Type Position Solution Motives
1 abed White: Ka7 Qh3 Reb Nd6 1. Rgb Qf6 deflection,
Black: Kh8 Qg6 Rg8 Bf7 Ph7 2. Qc3 Qc3: guidance,
3. Nf7 mate pin, fork
2 bed White: Kh2 Bf3 Nh5 Pg3,g7 1. g8Q+ Kg8: guidance,
Black: Kh7 Qe6 Ph3 2. Bd5 Qd5: pin,
3. Nf6+ fork
3 abc White: Kgl Qe2 Rel Bg6,h2 Pf2 1. QeT:+ QeT: deflection,
Black: K8 Qb7 Rg8 Be7,h3 Pg7,f6 2. Bd6 Qd6: guidance,
3. Re8 mate pin
4 acd White: Kgl Qc2 Rf2 Bbl Nf8 Pb2,c6,g2 1. cb: BbT: deflection,
Black: Kd8 Qg7 Rd6 Be4 Nd3 Pb7,e7 2. Qd3: Rd3: pin,
3. Neb6+ fork
5 abd White: Ka2 Qf4 Be3 Pb2,b3,h3,c7 1. Qb4:+ cb: deflection,
Black: Kab Qe7 Nb6 Pa6,b5,c5,b4,h4 2. Bb6:+ Kb6: guidance,
3. c8N+ fork
6 bc White: Kfl Qa6 Rel Nh3 Pg2,f2,.d4 1. d5 Qd5:
Black: Ke8 Qd6 Rh8 Nc6 Pe6,{7,g7 2. Qa8+ arbitrary guidance,
3. Qc6:4/Qd5:/Qh8:  pin
7 ad White: Kd6 Nf5 Pe7 1. Nh6+ Nhé:
Black: Kf7 Ng4 Ph7 2. Ke2 arbitrary deflection,
3. e8Q fork
8 bd White: Kc6 Ba6 Ne6 Ped 1. Be2 h1Q
Black: Ke8 Pe7,h2 2. Bh5+ Qh5: guidance,
3. Ng7+ fork
9 ac White: Kh2 Bb6 Pf3,g2 1. Bc7 Rg2:+
Black: Kh4 Rc2 Ph7,h5,g5 2. Kg2: arbitrary deflection,
3. Bd8/f2 mate pin
10 cd White: Kf3 Rc6 Neb5 Pgh 1. Re8+4 Kg7
Black: Kg8 Rd4 Be7 Pf4 2. Rc7 Kf8 pin,
3. Ngb6+ fork
11 ab White: Kh2 Qd1 Re2 Pd7,f2,h4 1. Re84 Re8:
Black: Kg8 Qb5 Rd8 Pa4,g7,h7 2. Qd5+ Qd5: deflection,
3. deQ mate guidance
12 d White: Kf2 Ne8,f7 Pd3 1. Nc7 Rg6/c6
Black: Kf4 Re6 Pd4 2. Nd5+ arbitrary
3. Ne7+/Neb+ fork
13 [¢ White: Kf1 Qh6 Rel Bf6 1. Qf8+ Qe8
Black: Kd8 Qa4 Rb7 Be7 Pf7 2. Rd1+ Rd7
3. BeT:+ pin
14 b White: Kb5 Qd7 Pa7 1. Kb6 Bab+/c5+
Black: Ka8 Bb4 Pa2,c2 2. Ka6/c6 arbitrary
3. Qb7/c6 mate guidance
15 a White: Kd8 Bb7 Pc7 1. Be8 Bd5
Black: Kd6 Be6 Pf5,a6 2. Bf5: Bb7
3. Be4d deflection

Problem 8 by Maiselis and Judowitsch (1966); problem 10 by Geisdorf (1984);
problem 12 by Chéron (1960); problem 14 by Speckmann (1958).
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4.1 Introduction

Semantics may be defined as the study of meaning. As a part of linguistics,
semantics investigates the meaning of lexical items, e.g. words (Lyons, 1968).
This paper, however, considers the meaning of lexical items from a psycholog-
ical point of view. The subject of psycholinguistic research is the behavior of
language speakers rather than the language itself. The psycholinguists try to
uncover what people know about the meaning of lexical items, or to put it in
other words, the psycholinguists investigate the verbal concepts people have in
mind. From this viewpoint, a semantic structure represents the knowledge on
the meaning of lexical items.

The main contribution to linguistic semantics comes from componential
analysis (cf. Lyons, 1968). According to componential analysis the meaning
of a word can be factorized into semantic components, which are established
by considering semantic relations between words. Probably the most impor-
tant semantic relation is the relation of superordination the converse of which
is called hyponymy. In general a lexical item X is a hyponym to a lexical
item Y, and Y is a superordinate to X, whenever the statement ‘this is an X’
entails the statement ‘this is a Y. For instance, animal is superordinated to
dog, because ‘this is a dog’ entails ‘this is an animal’. Conversely, dog is said
to be hyponymous (or subordinated) to animal. The pairs of nouns flower —
rose, mammal — dog, animal — mammal are related by superordination too.
These examples taken from the taxonomy of species in flora and fauna demon-
strate that superordination is a fundamental ordering principle in hierarchies
of concepts.

Psychological studies of semantic structures also try to identify semantic
components of lexical items. However, these components result from analyzing
(often numerical) measures of similarity of meaning. A review of the relevant
literature (see Section 4.2) puts emphasis on a critical discussion of the meth-
ods applied. Although they are widely used, they tend to be very strong, and
their structural assumptions are usually not tested in the applications. The
development of measurement theory (Krantz, Luce, Suppes & Tversky, 1971),
however, influenced the way more recently proposed methods are formulated
(Tversky, 1977; Colonius & Schulze, 1981). A measurement-theoretic formu-
lation is based on a strict distinction between theory and data. The structural
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assumptions the theory relies on are explicitly stated, and are based on qual-
itative observations rather than some numerical indices. They may thus be
tested in the applications.

The representation of semantic structures that we will propose below even
goes one step farther. We shall argue that a global measure of similarity of
meaning does not provide enough information for uniquely identifying seman-
tic components. The assessment of semantic structures is therefore based on
semantic generalization, and an empirically determined relation of superordi-
nation. Section 4.3 introduces the mathematical notions to which the theory
refers. The experimental paradigm used to assess a semantic structure is a
modification of a well-known task in mental testing. Section 4.4 formulates
a representation theorem for this situation. The assumptions of the proposed
join semilattice representation of semantic structures are empirically tested
with data from two experiments.

4.2 Previous work

Psychological studies of semantic structures are usually based on measures of
similarity of meaning. These (often numerical) measures result — either di-
rectly or as derived quantities — from a variety of experimental paradigms
(cf. Fillenbaum & Rapoport, 1971). Some examples will be presented below.
The data usually consist of a map assigning a number to each pair out of a
set of lexical items. This number is interpreted as the corresponding mea-
sure of similarity of meaning. By employing certain algorithms to the data,
the psycholinguists try to uncover semantic components (called dimensions,
features, or attributes) which may explain the similarities. These procedures
‘represent’ the lexical items as points in some space, and the pairwise similar-
ities as distances between the corresponding points: The higher the similarity,
the shorter the representing distance should be. The intuitive properties of
distances between points are explicitly stated in the following definition.

DEFINITION 4.2.1 Let S be a set and let d: Sx.S—R be a real valued map
on pairs of elements of S. d is called a metric on S, if for all x,y,z € S

L. d(z,y)=0iff z =y (minimality)
2. d(z,y) =d(y,x) (symmetry)
3. d(z,z) < d(z,y) + d(y, z) (triangle inequality)
A set S together with a metric d on S is called a metric space. O

EXERCISE 4.2.1 Let d be a metric on a set S. Show that d is non-negative,
ie.d(x,y) >0 forall z,y € S. O

REMARK 4.2.1 Let S be a nonempty set and let the map d: S xS — R
be defined by d(z,y) = 0if x =y, and d(x,y) = 1 if x # y. Then d is a metric
on S. This demonstrates that a metric is an abstract notion, which not only
captures the idea of interpoint distance in physical space. O
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The subsequently described methods are based on the same rationale, since
they all represent the stimuli as points of a metric space. As a consequence of
the generality of the notion of a metric, however, they look very different at
first sight.

4.2.1 Dimensional representations: Semantic space

Osgood, Suci & Tannenbaum (1957) propose the semantic differential as a
method providing an objective measure of meaning. A semantic differential is
a list of pairs of polar adjectives, like good — bad, black — white, large — small or
fast — slow. The polar adjectives define the extreme positions of rating scales
consisting of a number of intermediary categories. The meaning of a given
lexical item is determined by a list of ratings on these scales. For instance, the
kinship term father may be rated to be quite good, slightly white, extremely
large, and quite fast. The correlations of these so-called profiles are interpreted
as measures of the similarity of meaning. By applying factor analysis, they
serve to localize the concept as a point in an inner product vector space of low
dimensionality. The resulting vector space is called the semantic space.

Although the method of the semantic differential had a strong impact on
psychological research in the past, it is now of historical interest only. In
modern psycholinguistics multidimensional scaling (MDS) techniques are fre-
quently used to obtain a dimensional representation of semantic structures.
These techniques try to reproduce an ordering of pairs of stimuli with respect
to dissimilarity of meaning by the metric distances between the points of a
spatial configuration of low dimensionality (cf. Fillenbaum & Rapoport, 1971).
The stimuli are represented as points in a metric (see Definition 4.2.1), mostly
Euclidean, vector space.

There are some fundamental problems associated with such vector space
‘representations’. First, the procedures provide a spatial configuration to
nearly any set of data. Despite the strong restrictions inner product or met-
ric vector spaces impose on the data (e.g. Beals, Krantz & Tversky, 1968;
Suppes, Krantz, Luce & Tversky, 1989), a quasi automatical representation
results. Except for the discrepancy between the obtained distances and the
empirical dissimilarities, no other structural assumptions are tested. So it is
not easy, or even impossible, to decide which statements about the distance
between two points are empirically meaningful, and which operations on the
distances are lawful. For instance, is it meaningful to say that the distance
between two points is twice as large as the distance between another pair of
points? Or, how can the triangle inequality (see Definition 4.2.1) involving
addition be interpreted empirically with ordinal data? Obviously, this situa-
tion is not completely satisfying. The above mentioned problems can only be
solved by a measurement-theoretic foundation.
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4.2.2 Feature representations

For analyzing conceptual similarity data most psycholinguists favor a feature
representation. Nearly all of the methods used result in metric feature repre-
sentations, which can often be depicted by graphs, especially trees.

Miller (1969) presents a psychological method to investigate verbal con-
cepts which provides a feature representation of semantic structures by using
hierarchical clustering (Johnson, 1967).

To obtain a measure of dissimilarity of meaning, Miller proposes the method
of sorting. Subjects are instructed to sort English nouns (each of which is typed
on a card) into piles ‘on the basis of similarity of meaning’ (Miller, 1969,
p. 170). The subjects are allowed as many piles as they want and they can put
as many items as they want in any pile. By determining the number of subjects
that do not put a pair of items together into one pile, a numerical dissimilarity
measure ¢ is obtained. According to Miller (1969) the dissimilarity measure ¢
derived in this way satisfies the properties of a metric (see Definition 4.2.1).
This is not true in general. There may occur distinct nouns, which all subjects
put into one pile such that their dissimilarity vanishes. This is not the case in
Miller’s data, however.

A representation by a rooted tree is obtained from applying hierarchical
clustering to a given dissimilarity measure 6: SxS——R. A hierarchical clus-
tering is a sequence of partitions of the set S (a partition of a set S is a family
of pairwise disjoint subsets whose union is S) ranging from one with single
element equivalence classes to one with a single equivalence class containing
all elements. To any value o > 0 of the dissimilarity measure J a partition P,
is assigned. The equivalence classes of P, are called clusters. Two elements
x,y € S are grouped together in such a cluster, whenever their corresponding
dissimilarity is at most «, i.e. d(z,y) < . This implies that any cluster in the
partition Pg, with 3 > «, is the union of clusters of P,. These requirements
impose restrictions on the dissimilarity measure. The resulting necessary con-
dition is called the ultrametric inequality (Johnson, 1967, p. 245):

(4.1) d(z,z) <max{d(x,y),0(y,2)} for all z,y,z¢€ 8.

The ultrametric inequality implies the triangle inequality, but the converse
is not true. Together with minimality and symmetry (see Definition 4.2.1)
the ultrametric inequality is sufficient for the representation of a numerical
dissimilarity measure by a rooted tree (Johnson, 1967; cf. Exercise 4.3.9).

EXAMPLE 4.2.1 Consider the set S = {father, mother, son, daughter} of
kinship terms with pairwise dissimilarities given by Table 4.1.
It is easily verified that the dissimilarity measure ¢§ satisfies the ultrametric
inequality. The hierarchical clustering procedure starts with the finest partition
Py, in which every cluster contains exactly one element: Py = {{father}, {mother}, {son}, {daughtes
For a dissimilarity of 5, we get the partition P5; = {{father, mother}, {son, daughter}},
and finally Py = {{father, mother, son, daughter}} = {S}. Figure 4.1 presents
the corresponding rooted tree. The singleton sets are assigned to the terminal
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Table 4.1. Fictitious dissimilarity data on the set of kinship terms
S = {father, mother, son, daughter}.

0 | father mother son daughter
father 0 5 10 10
mother ) 0 10 10
son 10 10 0 )
daughter 10 10 ) 0

nodes of the graph, and the nonterminal nodes indicate that two (or more)
clusters merge. O

10

O —
father  mother son daughter

Figure 4.1. Rooted tree representation of the dissimilarity measure § of Table 4.1.

There are also some critical remarks that apply to Miller’s method of rep-
resenting semantic structures. Although sufficient conditions for the represen-
tation are known and testable, they are ignored. The data are manipulated by
certain algorithms resulting in various ‘approzimate solutions’ (see Figure 2 in
Miller, 1969, p. 180). It is again unclear whether the obtained theoretical re-
lations refer to any empirical fact. As a second problem, Miller’s method does
not offer any possibility to consider individual semantic structures. Only if the
sorting data from a considerable number of subjects are pooled, the derived
dissimilarity measure may become nontrivial. Moreover, deriving a numerical
dissimilarity measure always induces a total order (see Definition 4.3.1 below)
of pairs of stimuli. It is however by no means assured that for example the
critical property of transitivity is satisfied for qualitative judgements on the
dissimilarity of pairs of stimuli.

A representation theorem proposed by Colonius & Schulze (1981) solves
the above stated problems. The authors provide a foundation of rooted tree
representations by formulating qualitative conditions for a ternary relation,
which results from partitioning triples of lexical items with respect to similarity
of meaning: The relation holds for a triple of elements (a, b, ¢), if a and b are
more similar to each other than a,c, and b, c, respectively. In contrast to
Miller’s method of sorting, Colonius et al. (1981) consider individual semantic
structures. Experimental results however indicate that the constraints, which
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a rooted tree representation imposes on the ternary relation, are often not
empirically valid (Schulze & Colonius, 1979). Thus the representation seems
to be too restrictive.

Actually, the data of various experiments show that often qualitative sim-
ilarity judgments even cannot be represented by a metric (cf. Tversky, 1977).
An excellent survey of different representations of proximity data, and their
empirical applications, is given by Suppes, Krantz, Luce & Tversky (1989),
where further references can be found. For instance, Rosch (1975) showed that
the prototype of a conceptual category is generally less similar to a variant
than vice versa. In other terms, the similarity judgments are not symmetric.
An example from Tversky (1977) may illustrate this. In an experiment nearly
all subjects agreed that North Korea is similar to Red China, but only very few
considered Red China to be similar to North Korea. The judgments also de-
pend on the experimental task. Asking for dissimilarities instead of similarities
does not simply reverse the ordering of pairs.

Tversky (1977) proposed a feature representation of proximity data that is
neither metric nor dimensional, and takes into account the above mentioned
experimental findings. Each stimulus is represented as a set of features and the
proximity of two stimuli is expressed in terms of their shared and distinctive
features. This representation of proximity, however, presupposes the features
(and their assignment to the stimuli) to be known in advance. Obviously, the
applicability of this so-called contrast model for assessing semantic structures is
limited by this fact. The feature representation of the stimuli and the decision
process (which operates on the features and generates the similarity judgments)
cannot be identified simultaneously on the basis of proximity data. If the
characteristics guiding the decision process are unknown, as it usually will
be the case, the proximity data do not carry enough information to obtain a
unique feature representation.

Because of this, the subsequently developed representation of semantic
structures will not be based on any (numerical or qualitative) measure of sim-
ilarity of meaning. It will be more closely related to linguistical semantics.
Moreover, the feature representation that will be proposed generalizes rooted
trees.

4.3 Formalizing semantic structures

This section introduces the mathematical structure of a lattice as a candidate
for representing semantic structures. The following subsections characterize a
lattice from different points of view. A first characterization arises from the
theory of ordered sets, which is motivated by considering the ordinal properties
of hyponymy. Moreover, an exposition of the theory of concept lattices (Wille,
1982) will show that a lattice structure is induced by any feature representation.
From a second point of view, a lattice is defined as an algebraic structure with
two binary operations satisfying certain properties. One of these operations
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may be interpreted as semantic generalization, which will be the basis of a
method for assessing semantic structures.

Although the order-theoretic and the algebraic approach do not seem to
have anything in common at first sight, they are essentially equivalent. The
subsequent presentation of the theory closely follows an excellent introduction
to lattices and order theory by Davey & Priestley (1990), and the standard
textbook on lattice theory by Birkhoff (1967).

4.3.1 Partial orders

As we have already seen, the semantic relation of hyponymy induces an order-
ing on a set of words X. Such an ordering is formalized by a binary relation
R C X x X on X, ie Ris a subset of the set of all ordered pairs X x X
of elements of X. A set X together with a binary relation R on X is called
a relational structure, and is usually denoted by (X, R). Now, when do we
call a relational structure ( X, R) an ordering? The answer to this question is
not as easy as it might seem, since there are different notions of ordering. The
most common example of an ordering is probably the numerical relation ‘ess
than or equal to’; denoted by <. The ordinal properties of the real numbers R
with respect to the relation < are captured by the following definition.

DEFINITION 4.3.1 A relational structure ( X, <), with < a binary relation,
is a total order, if for all a,b,c € X

1. a <b or b <a, or both (connected)
2. if a <=b and b <a, then a =10 (antisymmetric)
3.if a =b and b <¢, then a <¢ (transitive

([l

The reader may easily verify that the relational structure (R, <) is a total
order. However, the semantic relation of hyponymy on a set of lexical items
does not satisfy all the properties of a total order. Hyponymy may be assumed
to be transitive, but in general it is not connected. If we consider the words
mammoal and pet for example, then neither is mammal hyponymous to pet, nor
is pet hyponymous to mammal. As a consequence of this we have to generalize
the notion of a total order by weakening the condition of connectedness.

DEFINITION 4.3.2 A relational structure ( P,C) with a binary relation C
on P is a partial order, if for all a,b,c € P

l.aCa (reflexive)
2. iff aC b and bC a, then a=0»b (antisymmetric)
3.if aCb and bC ¢, then aC ¢ (transitivity)

O

EXERCISE 4.3.1 Show that any total order is a partial order. O
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ExaMPLE 4.3.1 1t is left to the reader to verify that each of the following
relational structures is a partial order violating the property of connected-
ness.

1. (N,]|), with N the set of natural numbers and | the relation of divisibility.
The relation m | n holds for m,n € N if and only if there exists a k € N such
that m - k = n holds.

2. (NxN, <, ), with NxN the set of ordered pairs of natural numbers and
<y defined by

(k1) <o (m,n) iff k<m and [ <n.

3. (2% ,C), with 2% the set of all subsets of a non-empty set X and C
denoting set inclusion. O

Notice that if { P,C ) is a partial order and for all a,b € P the relation b ; a
holds if and only if @ C b, then ( P, ;) is a partial order too. The partial order
(P,;) is called the dual of ( P,C). The semantic relation of superordination
may thus be considered to be the dual of hyponymy and vice versa.

Given any statement about a partial order, we obtain the corresponding
dual statement by replacing each occurrence of C by ;. The duality principle
asserts that for a statement about partial orders which is true in all partial
orders, the corresponding dual statement is true in all partial orders too.

There exists a very useful graphical representation at least for finite partial
orders ( P,C ), i.e. the set P is finite. To describe the so-called Hasse diagram
we need a notion of immediate successive elements.

DEFINITION 4.3.3 Let ( P,C) be a partial order. For all a,b € P with
a # b we say b covers a and denote this by a <b, when a C b and there is no
element z € P distinct from a, b for which a C = C b. O

By Definition 4.3.3, a covering relation < is associated to any partial or-
der ( P,C ). The covering relation < may also be called the transitive reduction
of C. Moreover, if P is finite, a C b holds for distinct a,b € P if and only if
there exists a finite sequence of covering relations a = cy<c¢y<...<¢, = b. This
means that, in the finite case, the partial order C is completely determined
by its covering relation <. It is this fact which permits a convenient graphical
illustration of finite partial orders by Hasse diagrams.

In a Hasse diagram of a (finite) partial order ( P,C) the elements of P
are represented by points in the plane, and the covering relation is depicted
by interconnecting lines. Additionally, the point associated to an element b is
placed higher (i.e. nearer to the top of the paper) than that of an element a
whenever a < b holds, and no point representing an element distinct from a
and b lies on the line segment connecting the points associated to a and b,
respectively.

ExXAMPLE 4.3.2 Figure 4.2 presents the Hasse diagrams of the partial or-
ders (a) ({1,2,3,4,6},|) (with | the relation of divisibility), (b) (2{abet C),
and (c) ({1,2,3}x{1,2,3},<s). O
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()

(1,1)

Figure 4.2. Hasse diagrams of the partial orders (a) ({1,2,3,4,6},]),
(b) (2l@bet ) and (c) ({1,2,3}x{1,2,3},<2) (see Example 4.3.1).

As far as we have seen, the semantic relation of hyponymy may be rep-
resented by a partial order. The occurrence of synonyms however has to be
taken into consideration. Two distinct words are called synonymous, if they
have the same meaning. Synonymy may be defined as symmetrical hyponymy
(Lyons, 1968), i.e. two words are synonyms if one is hyponymous to the other,
and vice versa. Given two synonyms, and assuming hyponymy to be a partial
order, the property of antisymmetry then would imply their identity. Thus hy-
ponymy is only assumed to satisfy the properties of reflexivity and transitivity.
A relational structure ( P, <) with < a reflexive and transitive relation on P
is called a quasi order. For any quasi order ( P, <) the binary relation ~ on P

defined by
(4.2) a~b iff (a=<b and b=a)

turns out to be an equivalence relation on P.

EXERCISE 4.3.2 Show that the relation ~ defined by Equation (4.2) is an
equivalence relation on P. This means that ~ has to be reflexive, transitive,
and symmetric (i.e. a ~ b implies b ~ a for all a,b € P). O

In the empirical application we have in mind, the semantic relation of hy-
ponymy will thus be represented by a quasi order. The further exposition of the
theory, however, will be based on the notion of a partial order. The argument
is as follows: Any quasi order induces a partial order by forming equivalence
classes.
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For a given quasi order ( P, <), the equivalence relation ~ of Equation (4.2)
induces a partition of the set P which consists of the equivalence classes
laj={beP|b~a}
for all a € P. Now, the quasi order < induces a partial order C on the set of
these equivalence classes by

la] T [b] iff a <X0.

EXERCISE 4.3.3 Show that the relation = on {[a] | @ € P} is well-defined,
i.e. it is independent of the elements chosen to represent the equivalence classes.
(Il

4.3.2 Lattices

DEFINITION 4.3.4 Let ( P,C) be a partial order. An element L € P is
called a least element of ( P,C), if L C a holds for all @ € P. An element
T € P is called a greatest element of (P,C),if a T T holds for alla € P. O

ExXAMPLE 4.3.3 In the partial order ({1,2,3}x{1,2,3}, <5), depicted in
Figure 4.2 ¢), the pair (1,1) is a least element and (3,3) is a greatest element. In
(NXN, <) the pair (1,1) again is a least element, but there exists no greatest
element. Even in a finite partial order, there may be no least or greatest
element. Consider the partial order ({1,2,3,4,6},|), with | the relation of
divisibility (Figure 4.2a), in which no greatest element exists. O

The preceding examples show that a partial order may not have least or
greatest elements. They are, however, unique provided they exist.

EXERCISE 4.3.4 Let ( P,C ) be a partial order. Prove that there exists at
most one least element | € P and at most one greatest element T € P. O

If we consider a subset @ of the set P of a partial order ( P,C), then the
elements of P which are comparable to all elements in () are of considerable
interest.

DEFINITION 4.3.5 Let ( P,C) be a partial order and Q C P. The set
Q'={ueP|lalu, for all a €@}
is called the set of the upper bounds of ), and an element u € Q" is called an
upper bound of (). The set
Q'={lcP|lCa, for all ac@}

is called the set of the lower bounds of @, and an element [ € Q' is called a
lower bound of Q). O

It is particularly interesting whether the set of upper bounds Q" of a subset
Q of P has a least element, and whether the set of lower bounds Q' has a
greatest element.
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DEFINITION 4.3.6 Let ( P,C) be a partial order and ) C P. The sets Q"
and Q' are the sets of upper and lower bounds of @ respectively. An element
s € Q" is called the least upper bound or supremum of (), denoted by sup Q = s,
if s C ufor all u € Q% An element i € Q' is called the greatest lower bound
or infimum of Q, denoted by inf Q =i, if | T ¢ for all [ € Q'. O

Notice that a given subset () C P may not have a least upper bound or a

greatest lower bound, but sup () and inf () are unique provided they exist (see
Exercise 4.3.4).

DEFINITION 4.3.7 A partial order ( P,C) is called a lattice, if sup{a,b}
and inf{a, b} exist for all a,b € P. It is called a complete lattice, if sup @ and
inf () exist for all subsets () C P. O

EXAMPLE 4.3.4 In Figure 4.2, the partial order depicted in a) is not a
lattice, whereas the partial orders in b) and c¢) are lattices. O

REMARK 4.3.1 Notice that any finite lattice (L,C), i.e. L is a finite set,
is a complete lattice too. In general a lattice ( L,C) may not have a least
or a greatest element, but if ( L,C) is a complete lattice, then a least and a
greatest element is given by inf L and sup L, respectively. O

4.3.3 Concept lattices

The theory of concept lattices (Wille, 1982, 1987; Ganter & Wille, 1989; see
also Davey & Priestley, 1990) shows that any characterization of a set of objects
by distinctive features corresponds to a lattice. If we assume that a collection
of semantic components constitute the meaning of a lexical item, then the
theory of concept lattices provides another argument for representing semantic
structures by lattices. The theory however may be applied not only to semantic
structures, but to any set of arbitrary objects and some features assigned to
them.

DEFINITION 4.3.8 A relational structure (G, M,I) with G and M sets
and I C GxM a binary relation, is called a (formal) context. The elements
g € G are interpreted as objects and the elements m € M are interpreted as
attributes'. We say the object ¢ has the attribute m, if gIm holds. O

The following example is chosen to demonstrate the universality of the
theory of concept lattices.

!The letters G and M refer to the initial letters of the German “Gegenstinde” for objects,
and “Merkmale” for attributes, respectively.
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ExXAMPLE 4.3.5 Let G = {Ry, R, R3, Ry, Rs} be the set of the binary
relations

R =0
Ry = {((Z, (I), (bv b)}
Ry = {(a,b),(b,a)}
Ry = {(@7 CL), (bv b)? (aa b)}
Ry = Sx8
on the set S = {a,b}, and consider the properties of reflexivity, connected-

ness, transitivity, antisymmetry and symmetry as attributes. Then we get the
context in Table 4.2. O

Table 4.2. Formal context of binary relations R to Rs.

reflexive | connected | transitive | antisymmetric | symmetric
R, X X X
Ry X X X X
R3 X
Ry X X X X
Rs X X X X

The relation I C Gx M induces relations between the subsets of G and M.
Consider the maps p : 2¢——2M and ¢ : 2 —2¢, with 2¢ and 2™ the power-
sets of G and M respectively. Let gl denote the set of all attributes which are
assigned to the object g € GG, thus

gl ={me M| glm}.

The set of all objects that have a particular attribute m € M is denoted by I'm:
Im={g€G|glm}.

Now, the maps p and ¢ are defined by

(43) o) = Nl
(4.4) oB) = () Im

for A € 2¢ and B € 2M. By this definition, p(A) is the set of attributes that
the objects g € A have in common. o(B) is the set of objects to which all the
attributes m € B are assigned to.

Consider the subset A = {Ry, R4} of the set of binary relations of Exam-
ple 4.3.5. From the given context we derive p(A) = {t,a}. Both relations R,
and R, are transitive and antisymmetric, and share none of the other proper-
ties. Conversely, for B = {t,a} we obtain o(B) = {R1, Re, R4}. Notice that
p({R1, R2, R4}) = {t,a} = B holds.
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The subsets A C G and B C M, which are related to each other by the
equations

p(Ad) = B
o(B) = A

are of particular interest.

DEFINITION 4.3.9 Let (G, M,I) be a context. An ordered pair (A, B)
with A C G, BC M and p(A) = B, o(B) = A is called a (formal) concept of
the given context. A is said to be the extent of the concept and B is said to
be the intent of the concept. O

The extent A of a concept (A, B) is the set of objects, which share the
attributes in B. The intent B of (A, B) is the set of attributes assigned
to all objects in A. As we have already seen, the pair ({R, Rs, R4}, {t,a})
is a concept of the context of Example 4.3.5. This is also true for the
pairs ({Ra, Ry, Rs}, {r,t}) and ({R4},{r,c,t,a}), for instance. The pair
({R1, R4}, {t,a}) is not a concept of the context of Example 4.3.5, since
o({t,a}) = {R1, Ry, Ry} is a proper superset of {Ry, Ry}.

Formally, defining p and ¢ in the above stated way results in a Galois
connection between the powersets 2¢ and 2™ with respect to set inclusion.
This means that the properties of the following Definition 4.3.10 are satisfied.

DEFINITION 4.3.10 Let (P;,C;) and ( P»,Cy) be partial orders, and let
p:P.— P, and o : P,— P, be any maps, such that for all x,y € P, and
u,v € Py

1. x G y implies p(y) Cq p(z),

2. u Cy v implies o(v) C; o(u),

3. 25y 00p(x) and u Cy poo(u).

The maps p and o are said to define a Galois connection between the partial
0rders<P1,El>and<P2,Eg>. O

A Galois connection is a kind of order reversing relationship between two
partial orders. In case of (29 C) and (2™ C) being the respective partial
orders, the compositions o o p and poo of the maps p and o can be interpreted
in the following way. The set o o p(A) is the set of all objects in G that have
in common those attributes shared by the objects g € A. Conversely, po o(B)
is the set of attributes in M that those objects have in common, to which all
the attributes m € B are assigned to.

EXERCISE 4.3.5 Show that the maps p : 26—2" and ¢ : 2¥—2¢ as
defined by Equations (4.3) and (4.4) form a Galois connection between the
powersets 2¢ and 2™ with respect to set inclusion. O

If we take a closer look at the maps cop : 2¢ — 2% and poo : 2M — 2M,
we see that for any concept (A, B) of the context (G, M, 1) the equations
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ogop(A) = A, poo(B) = B follow from Definition 4.3.9. These equalities
characterize the extents A and the intents B as special subsets of G and M,
respectively. Definition 4.3.10 only implies 0 o p(X) D X and poo(Y) 2 Y
for arbitrary subsets X € 2, Y € 2M. The properties of the compositions
oo pand po o are captured by the following definition of a closure operator.
Definition 4.3.9 characterizes the collection of the extents, and the collection of
the intents of a given context ( G, M, I') as the collections of the closed subsets
of G and M, respectively.

DEFINITION 4.3.11 A closure operator on a set S is a map ¢ : 2°5—2°
such that for any X,Y € 2°

1. X Co(X) (extensive)
2. (X)) = (pod)(X) (idempotent)
3. if X CY, then ¢(X) C ¢(Y) (isotone)
A subset X of S is said to be closed under ¢ (or a fized point of ¢), whenever
#(X) = X holds. 0

Now, if Bgar? denotes the set of all concepts of a context (G, M, '), then
an ordering on Bgys; arises in a natural way.

DEFINITION 4.3.12 Suppose (A1, By), (A2, By) € Bgayg. A binary relation
C on Bgyyr is defined by

(AlaBl> E (AQ,BQ) iff Al g AQ. O

Notice that it suffices to consider the extents of the concepts (A, By) and
(Ag, By), since A; C A, is equivalent to B C By as a result of Definitions 4.3.9
and 4.3.10. The obtained ordering relation on the set of concepts is interpreted
as the semantic relation of hyponymy:.

DEFINITION 4.3.13 If (A1, By) C (Asg, Bs), then (A;, By) is said to be sub-
ordinated to (As, By), and conversely, (A, Bs) is said to be superordinated
to (Al, Bl) O

It is evident that ( By, £) is a partial order, since the relation C is
defined on set inclusion. For ( Bgasr, C ) being a complete lattice, the existence
of least upper bounds and greatest lower bounds for all subsets of Bgyr has
to be shown. This is done by defining;:

(4.5) inf{(4;,B)) | (4;,B;) € Baur.j € 7} = ([ 45,000l By)),

jed jedJ
(4.6) sup{(A;, B;) | (43, B;) € Bour,j € J} = (o0p(J 4)), () B))-
jeJ jeJ

According to these definitions the extent of the infimum of a subset of Bgyr
is simply the intersection of the extents of the respective concepts. The intent

2The letter B refers to the German “Begriff” for concept.
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of the supremum of a set of concepts results from intersecting the respective
intents. This means that both the collections of all extents of Bgasr, and
all intents of Bgasr, respectively, are N-stable: The intersection of extents
(intents) of Bgarr is again an extent (intent) of Bgpyr. This is not true for the
set-theoretic union of extents and intents of Bgasr. The intent of the infimum
of a set of concepts for example is the least intent of Bgys; that contains the
union of the respective intents.

REMARK 4.3.2 Notice that (Bgar, C) being a complete lattice does not
put constraints on the relation I of the context (G, M, T). O

The complete lattice ( Bgarr, C ) can be illustrated by a Hasse diagram. As-
signing the names of objects and attributes to the concepts in the following way
assures that the context (G, M, I) can be reconstructed from the correspond-
ing concept lattice: The name of an object g € G is assigned to the concept
(0o p({g}),p({g})), which is the concept with least extent including g. The
name of a attribute m € M is assigned to the concept (a({m}),poa({m})),
which is the concept with least intent including m. The extent of a concept is
the set of objects assigned to that particular concept or to a concept which is
hyponymous to the given one. The intent of a concept is the set of all attributes
assigned to that particular concept or to a concept, which is superordinated to
the given one. For reconstructing the context from the corresponding concept
lattice, define gI'm if and only if g and m are assigned to the same concept, or
the concept m is assigned to is superordinated to the concept ¢ is assigned to.

EXAMPLE 4.3.6 The diagram in Figure 4.3 illustrates the concept lattice
derived from the context of Table 4.2. O

The theory of concept lattices as introduced above, strongly supports a
lattice-theoretic representation of semantic structures. The basic data are as-
signments of features to objects, called formal contexts. Such an assignment
is however not the starting point of psycholinguistic research, but its ultimate
goal. From the representation of semantic structures, which will be proposed
in Section 4.4, a formal context can easily be derived.

4.3.4 Lattice algebra

In Section 4.3.2 lattices were introduced as ordered sets of a special type. Now
we consider them as algebraic structures in their own right. An algebraic
structure (L,01, ... ,0, ) is a nonempty set L together with some n;-ary
operations o; defined on L, i.e. o; : L — L (i =1, ... ,m). We postpone a
discussion of how the assessment of semantic structures may benefit from the
algebraic viewpoint until the relationship between order theoretic and algebraic
characterization is established.
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symmetric .
transitive

connected

Figure 4.3. Hasse diagram of the concept lattice derived from the context of
Table 4.2.

EXAMPLE 4.3.7 Obviously, an algebraic characterization of the lattice { 2%, C
) may be based on the familiar set-theoretic operations of union U and inter-
section M. In particular, the reader will verify without much effort that for any
A, B e 2%
AUB = sup{A4, B}
ANB = inf{A, B} O

For generalizing this relationship to an arbitrary lattice ( L, C ), we define
two operations U and M on L called join and meet, respectively. Proposi-
tion 4.3.1 deals with the details and the consequences of such a definition.

PROPOSITION 4.3.1 Let (L,C) be a lattice. The binary operations L
and I on L defined by

aldb = sup{a,b}
aflb = inf{a,b}
for all a,b € L, satisfy the following properties:

1. aU(bUc)=(aUb)Uc and an(bMec) = (aMb)Mec (associativity)
2. alb=bUa and alb=>bMa (commutativity)
3. af(alb)=a and ald(aMb)=a (absorption)
4. ala=a and aNa=a (idempotency)

O

PROOF. The duality principle we have encountered in Section 4.3.1 implies
that interchanging LI and M in a statement about lattices results in the cor-
responding dual statement. It is therefore enough to consider only one of the
two equations of each property.
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Since commutativity, idempotency and absorption are immediate, we only
prove associativity. It is enough to show that (a U b) U c = sup{a, b, ¢} because
of commutativity. But this follows from

def{ab,c}* & de{ab}" and cCd
< agUbCd and cC d
v & de{alb,c}" ]

PROPOSITION 4.3.2 Let the algebraic structure { L,1U,1) satisfy the prop-
erties 1-3 of Proposition 4.5.1. If a binary relation T on L is defined by

alb iff aldb=>b iff alflb=a

for all a,b € L, then ( L,C) is a lattice with sup{a,b} = aUb and inf{a,b} =
arlb. a

PROOF. It is left to the reader to prove the equivalence a LUb = b iff a
b = a for all a,b € L (Exercise 4.3.6), and to show that absorption implies
idempotency (Exercise 4.3.7).

The reflexivity of C follows directly from idempotency. The relation C is
antisymmetric because a C b and b C a imply b = alUb =bU a = a. Since
a C b are b C ¢ are equivalent to a b = b and b U ¢ = ¢, respectively, we have

aldc = alU(bUc)
= (aUb)Uc
= bUc
= C’
which again is equivalent to a C ¢ and therefore C is transitive.
It remains to show that the least upper bound of elements a,b € L equals
a Ub. The equation inf{a,b} = a M b then follows by duality. By absorption
we get al(aUb) = a and (using commutativity) bM (a U b) = b, which implies
that a Ub € {a,b}*. To show that a b is the least upper bound of {a, b} let
s € {a,b}". From alUs = s and bl s = s we obtain

(aUb)Us = alU(bUs)
= als
S,
which is equivalent to a LIb C s. [ |

EXERCISE 4.3.6 Prove the equivalence a Llb = b iff aMb = a for all
a,be L. O

EXERCISE 4.3.7 Show that absorption implies idempotency. O
The preceding two propositions show that an algebraic structure ( L, LI, 1)

satisfying
1.al(Ue)=(aUb)Uc and aM(bMc) = (aMb)Mc (associativity)
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2. alUb=bUa and aNb=>bMNa (commutativity)

3. aM(alb)=a and al (aMb) =a (absorption)
for all a,b,c € L defines, and is defined by, a lattice ( L, C). Because of this,
both structures are considered to be equivalent, and an algebraic structure
( L,, M) satisfying associativity, commutativity and absorption will therefore
be called a lattice.

REMARK 4.3.3 As indicated by Example 4.3.7 on page 127, the relational
structure (2% U, N) provides a first example of an algebraically characterized
lattice. Choosing the symbols LI and 11 for join and meet, respectively, stresses
this fact. However, the concept of a lattice is still more general than the given
example might suggest. For one reason, notice that the set L is not restricted
to be a family of sets, but can be any set of arbitrary objects. A second reason
is that in (2% U,N) for all sets A, B,C € 2° the relation between the two
operations is characterized by distributivity:

AU(BNC) = (AUB)N(AUC)
AN(BUC) = (ANB)U(ANC)

Distributivity is not implied by associativity, commutativity, and absorption.

Figure 4.4 presents an example of a non-distributive lattice. O
T
a C
1

Figure 4.4. Non-distributive lattice on the set { L, a,b,c, T }.

We now turn to the initially posed question concerning the intended appli-
cation. The preceding sections provide strong arguments for a lattice represen-
tation of the semantic relation of hyponymy on a set of concepts L. For two
concepts a,b € L the definitions of Proposition 4.3.1 then imply that a Ll b is
the least concept superordinated to a and b, and a M b is the greatest concept
hyponymous to a and b. For assessing a semantic structure the join-operation
seems to be of particular interest. This becomes evident if we consider the
relationship between semantic components or features on the one hand, and
superordinated concepts on the other hand. The theory of concept lattices
introduced in Section 4.3.3 formally describes this relationship. It follows from
Equation (4.6) on page 125 that the features associated with the join alLIb of two
concepts a,b € L are exactly the features shared by a and . Any superordi-
nated concept to a given concept can be interpreted as one of its features. Now,
the assessment of a semantic structure may be based on semantic generaliza-
tion: Given two concepts, a subject has to respond with a least superordinated
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concept. Such a situation is well-known in mental testing. In many intelligence
tests (e.g. Wechsler, 1955) there is a subtest, in which a subject is presented
two nouns, and is asked to give a verbal description of the features they share.
For instance, if the pair orange — banana is presented a subject might answer
‘vou can eat them both’, or ‘fruits’, or ‘tropical fruits’. Because we want to
represent this kind of data by a closed algebraic operation, this task needs
to be specified. The subjects are asked to respond with a noun (eventually
modified by adjectives) that denotes a least superordinated concept. In the
above given example, a subject may now answer with the noun phrase tropical
fruits, since it is hyponymous to fruits, and it is superordinated to both orange
and banana. Starting with a set of nouns out of a certain domain, this set
successively grows with each noun phrase distinct from the previously given
answers. If all pairs of the resulting set are presented to the subject, and there
do not occur new noun phrases, then the data may be formalized by a binary
algebraic operation. Since we want to represent this empirical operation by the
lattice-theoretic join, the following Definition 4.3.14 summarizes the properties
of the substructure ( L, ) of a lattice ( L, L, ).

DEFINITION 4.3.14 The algebraic structure ( L, L) with LU: LxL—L is a
join semilattice, if for all a,b,c € L:

l.alb=>bUa (commutative)
2. al(bUec)=(alUb)Uc (associative)
3. ala=a (idempotent)

O

The definition of a meet semilattice ( L, 1) is dual to Definition 4.3.14.

4.3.5 Homomorphisms and congruences

The notion of a structure preserving map — a so-called homomorphism —
is a crucial notion in measurement theory. A homomorphism establishes the
relationship between empirical observations and theoretical statements. The
following Definition 4.3.15 of a lattice homomorphism is based on the algebraic
characterization of lattices introduced in the preceding section. Exercise 4.3.16
deals with homomorphisms of partial orders.

DEFINITION 4.3.15 Let ( L1,Uy,M; ) and ( Lo, s, My ) be lattices. A map
p: L1— Ly from Ly to Ly is called a lattice homomorphism if and only if for all
a,be Ly
elalhd) = p(a)lap(b) (join-preserving)
and
e(aMb) = (a)Nap(b) (meet-preserving)

If ¢ is one-one and onto, then ¢ is called a lattice isomorphism. a



4 Semantic structures 131

Obviously, a join-semilattice homomorphism (meet-semilattice homomor-
phism) requires only joins (meets) to be preserved.

To prepare the handling of synonymous concepts we consider the properties
of an equivalence relation induced by a given lattice homomorphism.

PROPOSITION 4.3.3 Let ( Ly,U;,My) and { La,Us, My ) be lattices, and let
p: Li— Ly be a lattice homomorphism from Ly into Ly. Then the equivalence
relation ~ defined on L1 by

a~b iff pla)=p()
for all a,b € Ly is compatible with join Uy and meet My on Ly, such that
a~b and c~d
implies
alice~blUd and allyec~blyd
forall a,b,c,d € Ly. O

ProOOF. It is immediate that ~ is an equivalence relation on L;. If we
assume a ~ b and ¢ ~ d which is equivalent to ¢(a) = ¢(b) and ¢(c) = ¢(d),
then we obtain

p(a Ly c) = p(a) Uz p(c) = p(b) Lz ¢(d) = (bl d),
since @ preserves join. By definition, this equation is equivalent to allic ~ bl d.
Dually, the equivalence relation ~ is compatible with meet. [ |

This result gives rise to the following definition.

DEFINITION 4.3.16 An equivalence relation ~ on a lattice ( L, LI, M) which
is compatible with both join and meet (according to Proposition 4.3.3) is called
a congruence on the lattice ( L, L, T). 0

In Proposition 4.3.3 congruences are derived from lattice homomorphisms,
but Definition 4.3.16 defines them without referring to homomorphisms. More-
over, we shall show that to any congruence on a lattice there is associated a
lattice homomorphism.

Let (L,U,M) be a lattice. Given an equivalence relation ~ on L, we con-
sider the set

Lj~={la][a e L}

of equivalence classes [a] = {b € P | b ~ a}. The natural definitions®
[a] U[b] = [allb]
[a] T [b] = [alb

3We use the same symbols for join and meet on L and L/~, respectively. It will always
be clear from the context to which of the two sets we refer.
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for all a,b € L provide well-defined operations LI and M on L/~ if they are
independent of the elements chosen to represent the equivalence classes. This
requires that
[a1] =las] and  [by] = [bo)]
implies
[CLl L bl] = [ag LJ bg] and [a1 M bl] = [CLQ [ bg]

for all aq, as, by, by € L, which is precisely the compatibility condition of Propo-
sition 4.3.3. It follows that L and M are well defined on L/~ if and only if ~
is a congruence.

DEFINITION 4.3.17 If ~ is a congruence on a lattice (L, M), we call
(L/~,,M) the quotient lattice of ( L,J,M) modulo ~. O

The following Proposition 4.3.4 now provides the announced result.

PROPOSITION 4.3.4 Let ~ be a congruence on the lattice ( L,J,M). Then
(L/~,U,M) is a lattice and the natural quotient map @ : L — L/~, defined
by m(a) := [a], is a lattice homomorphism. O

EXERCISE 4.3.8 Prove Proposition 4.3.4. O

4.3.6 Supplementary Problems

EXERCISE 4.3.9 Let (S,d) be a metric space. For each o > 0, define a
relation =, on S by

T,y iff d(z,y) < a.
Show that ~, is an equivalence relation for each o > 0 if and only if d satisfies
the ultrametric inequality. O

EXERCISE 4.3.10 Consider the set A = {a,b,c,d} and the relation
R= {(a’v a), (b7 b)? (Cv C), (d7 d)? (a7 C) (a d) ( ) (b ) (C d)} on A.

1. Show that (A, R) is a partial order.

2. Determine the covering relation < (see Definition 4.3.3) on A.

3. Draw the Hasse diagram of (A, R).

4. Do there exist a least element and a greatest elements in ( A, R)?

5. Determine the least upper bounds and the greatest lower bounds for all
subsets of A for which they exist. O

EXERCISE 4.3.11 Draw the Hasse diagram of the partial order
({2,3,5,7,6,35,210},|) with | the relation of divisibility, and compare it to
the rooted tree in Figure 4.1. O

EXERCISE 4.3.12 Draw the Hasse diagrams of the partial orders
(P({1,2,3,4}),U,Nn) and ({1,2,3,4,6,9,12,18,36},|). Compare the last di-
agram to that of the partial order ({1,2,3}x{1,2,3}, <) (see Figure 4.2¢).

O
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EXERCISE 4.3.13 Show that in any lattice (L,U,M) = Uy = z implies
xMNz=ux,and My = z implies z LU z = x for all x,y,z € L. O

EXERCISE 4.3.14 Prove that in any lattice ( L,L, M) the following impli-
cations hold for all x,y € L: x Uy = x implies x My = y and x My = x implies
rUy =y. O

EXERCISE 4.3.15 Show that in any lattice (L,U, M), the equality
xUy =xMy implies x =y for all z,y € L. O

EXERCISE 4.3.16 Let (P,C;) and (P, Co) be partial orders. A map
Y: PL— P, from P to P, is called a homomorphism of partial orders if and
only if for all a,b € P,

if aCyb, then ¥(a) Ty ()
If 7 is onto and
a By b iff ¥(a) Cs (b)
holds for all a,b € Py, then 9 is called an isomorphism of partial orders.
A homomorphism of partial orders, which is one-one and onto, is not nec-

essarily an isomorphism of partial orders. Show this by providing an example.
(Il

4.4 A method for assessing semantic structures

4.4.1 Theory

In this section, we present a representation theorem that applies to the data
resulting from a method for assessing semantic structures for a set of nouns By,
which we introduced in Section 4.3.4. The details of the experimental procedure
will be given in a moment. The data resulting from such a procedure may be
formalized by an empirical structure ( B, o), where B O By is the set of noun
phrases a subject responds with, and o denotes his or her assignments of least
superordinates to pairs.

As already mentioned, we cannot expect ( B, o) to be isomorphic to a join
semilattice. There may occur synonyms, i.e. distinct nouns with the same
meaning associated to them. Within the empirical structure ( B,o) it is diffi-
cult to distinguish an occurrence of synonyms from a violation of the axioms of
a join semilattice (Definition 4.3.14). Consider the case aob = c and boa =d
for a,b,c,d € B. If ¢ and d are not synonymous, then commutativity (see Def-
inition 4.3.14) is violated. If ¢ and d are synonyms, then a o b will not be equal
to boa, but will be equivalent to bo a with respect to synonymy. The equality
sign in commutativity aob = boa has to be substituted by an equivalence rela-
tion ~ on B. Weaker versions of the remaining properties of a join semilattice
are obtained in the same way. But how do we arrive at an equivalence relation
~ on B representing synonymy? According to Lyons (1968), synonymy can
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be defined as symmetrical superordination (see Section 4.3.1). This suggests
a complete pair comparison experiment resulting in an empirical relation >
of superordination on B. The following definition introduces an equivalence
relation for a more general situation.

DEFINITION 4.4.1 Let S be a set and let R C S x S be a binary relation
on S. A binary relation ~ on S is defined in the following way. For x,y € S
there is x ~ y if and only if

rRw it  yRw,
wRx iff  wRy
forallw e S. O

EXERCISE 4.4.1 Show that the relation ~ of Definition 4.4.1 is an equi-
valence relation on the set S. O

REMARK 4.4.1 Notice that the relation R in Exercise 4.4.1 is completely
arbitrary. Defining synonymy according to Definition 4.4.1 always results in an
equivalence relation. If synonymy is based on Equation (4.2) (see page 120),
then its properties depend on the relation R. The following exercise deals with
the details. O

EXERCISE 4.4.2 Let R be a binary relation on the set S. Let the relation ~
on S be defined according to Definition 4.4.1, and let the relation ~ on S be
defined by

r~y iff (rRy and yRx)

for all z,y € S (see Equation (4.2)). Show that the relations ~ and ~ on S
coincide, if R is a quasi-order, i.e. reflexive and transitive. O

DEFINITION 4.4.2 Let the relation ~ be defined on ( B, =) according to
Definition 4.4.1. Then two elements a,b € B are called conteztual synonyms,
whenever a ~ b holds. O

The term contextual synonymy stresses the fact that this definition of syn-
onymy explicitly refers to the context of the experimental task, the set B. This
parallels the position of theoretical linguistics that synonymy always depends
on the context (Lyons, 1968). Since the relation of contextual synonymy ~ is
defined on ( B, > ), its compatibility to the operation o has to be shown. Con-
gruence is the compatibility condition we refer to. The subsequently stated
representation theorem directly follows from the results of Section 4.3.5.

THEOREM 4.4.1 If { B,o,~) with o a binary operation and ~ an equiva-
lence relation on B satisfies the following conditions for all a,b,c,d € B

1. ao(boc)~(aob)oc (weak associativity)

2. aob~boa (weak commutativity)
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3. aoa~a (weak idempotency)

4. if a~b and ¢~ d, then aoc~bod (congruence)
then there exists a homomorphism ¢ : B — L onto a join semilattice ( L,L1),
such that

plaod) = p(a)Up(d)
and

a~b iff  ¢la) =)
for all a,b e B. O

With the theoretical preparations of Section 4.3.5 at hand, the proof of
Theorem 4.4.1 poses no problems.

PROOF. Defining L := B/~, and [a] U [b] := [a 0 b], the required homomor-
phism is given by the canonical quotient map ¢ (a) = [a] (see Proposition 4.3.4).
|

REMARK 4.4.2 As a consequence of Proposition 4.3.3, the conditions of
Theorem 4.4.1 are not only sufficient, but also necessary, i.e. they follow from
the representation. O

Theorem 4.4.1 lists the empirically testable conditions of a join semilattice
representation of the relational structure ( B, o, ~ ). Because of the equivalence
of the algebraic and the order-theoretic characterization (see Section 4.3.4),
we may also get a join semilattice representation of the relational structure
( B, >=). We do not explicitly state a representation theorem for this situation,
because the exposition of the mathematical background exactly tells us how to
obtain such a representation. Consider the relation 3 on the set of equivalence
classes B := B/~, which is induced by . For ( 3, J) the properties of a partial
order (see Definition 4.3.2) have to be satisfied. Moreover, Proposition 4.3.1
implies that least upper bounds have to exist for all pairs of equivalence classes
of B. If (B,3) meets all these requirements, then the natural quotient map
¢ : B — B, ¢(a) = [a] is again the required homomorphism.

We now turn to the problem of extracting the semantic features of the el-
ements of the considered domain Bj from the join semilattice representation.
The following assumes that at least one of the empirical relational structures
(B,o,~), or { B,=), can be represented by a join semilattice (B, 3)* As
already mentioned, the concepts superordinated to that associated to a par-
ticular element of By may be interpreted as its semantic features. We thus
consider the set B = {[b] € B | [b] 2 [a], for some a € By}, and derive a formal
context { By, B, I') by defining

al[b] iff [0] 2 [a]

for all a € By, [b] G_E. In the terminology of formal concept analysis, By is the
set of objects, and B is the set of attributes. The relation I C By x B describes

4The order-theoretic characterization of a join semilattice leads to simpler expressions.
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the assignment of the semantic features to the nouns of the domain By. From
this formal context, a concept lattice may be constructed (see Section 4.3.3).

REMARK 4.4.3 In the formal context ( By, B, I'), the feature corresponding
to the greatest element of B may be omitted, because it is assigned to all
elements of By. Doing this does not change the concept lattice. O

4.4.2 Experimental paradigm

Let By denote a set of nouns out of a certain domain. To assess an individual’s
semantic structure of By, two experiments have to be conducted.

Fxperiment 1 starts with presenting a randomly selected pair of elements
of By. The subject is instructed to respond with a noun (eventually modified by
adjectives) denoting a concept which exactly contains the two given concepts.
If the subject’s answer is ag, we proceed by presenting two randomly selected
elements from the set By = By U {ao} at the next trial. Continuing in this
way, for k > 1 the set By, is obtained by By = By_1 U {ax_1}. At each trial k,
besides the two concepts in question, all elements of Bj are displayed. The
experiment is finished regularly after trial [, if each pair of elements of B; has
been presented to the subject, and q; is already an element of B;. The results
of Experiment 1 can then be formalized by a binary operation on B;. We do
not continue with data collection after trial [ too, if the number of elements of
B4 exceeds 25. A total number of 262 = 676 presentations would annoy even
a willing subject. In any case, the set resulting from Experiment 1 is denoted
by B.

FExperiment 2 is a complete pair comparison experiment on the set B. For
all pairs out of B, the subject is asked to decide whether the first concept
contains the second concept. This results in an empirical relational struc-
ture ( B, > ).

4.4.3 An empirical application

Heller (1988) provides a first empirical application of the method proposed
above. The study aims at evaluating the experimental procedure, and not
at assessing a semantic structure for a large domain. Consequently, the set
By should be a small set of nouns with quite obvious semantic features, like
By = {man, woman, boy, girl}®. The subsequent presentation of the data will
show that the results are absolutely nontrivial. Neither all subjects satisfy the
above stated representation conditions, nor are they violated by all subjects.
The resulting semantic structures show remarkably individual differences.
The experiment was run on a Personal Computer. The subjects were asked
to type in their answers on the keyboard, and the context was displayed on

5The reported experiments were conducted in German. The translations are as close as
possible to the originally used concepts.
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the lower half of the screen. The following Tables 4.3, 4.4, and 4.5 summarize
the results of both experiments for all subjects.

Table 4.3 contains the number of elements n,. of the set B, and the number
of equivalence classes n, of contextual synonyms. For five out of eight sub-
jects there are no contextual synonyms (i.e. n, = n.), whereas in the data of
Subject 6 many synonyms occur.

Table 4.3. The number of concepts n. and the number of equivalence classes n, of
contextual synonyms.

Subject | 1 2 3 4 5 6 7 8
Ne 10 8 6 9 16 26 9 16
Ne 9 8 6 9 14 18 9 16

Table 4.4 shows the results of testing the conditions for a representation
of the relational structure ( B, o, ~) by a join semilattice (see Theorem 4.4.1).
We do not obtain a closed operation o on B for Subject 6, because the num-
ber of the answers exceeded the limits. This is because the subject always
responded with a noun phrase different from the presented ones. The axioms
of Theorem 4.4.1 cannot be tested in this case.

Table 4.4. The results of testing the axioms for the empirical structure ( B, o, ~ ).
The symbols +, —, x denote that the corresponding condition is satisfied, not sat-
isfied, or not tested.

Subject 1 2 3 4 5 6 7 8
weak idempotency + - 4+ 4+ - x + -
weak commutativity | + - + + - x 4+ -
weak associativity + - + + - x + -
congruence + + + + - x 4+ +

The data of four subjects can be represented by a join semilattice. This
means that semantic generalization from two given concepts, as demanded in
the experimental task, is independent from the order of presentation (com-
mutativity). Satisfying associativity implies that the least superordinates of
n-tuples of concepts are unique. In the data of the remaining four subjects,
there are no systematic violations of the axioms, except for Subject 8 and
idempotency, and violations are not limited to a particular axiom. This means
that subjects are able to generalize from given concepts in a way consistent
with a join semilattice representation.

Table 4.5 contains the results of testing the conditions for the relational
structure (B,J) being a join semilattice. The existence of the least upper
bounds for all pairs of elements of B = B/~ is tested only if the remaining
axioms are satisfied.
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Table 4.5. Results of testing the axioms for the empirical structure (B,23). The
symbols +, —, X denote that the corresponding condition is satisfied, not satisfied,
or not tested.

Subject 1 2 3 4 5 6 7 8
reflexivity + + 4+ + + o+ - =+
transitivity + 4+ + + - 4+ = =
antisymmetry T
existence of least upper bounds | + + + + X + X X

A representation by a join semilattice is possible for the data of five sub-
jects. Three out of these five subjects also satisfy the axioms formulated for
Experiment 1. In these cases, the joins and the the least upper bounds coincide
(see Proposition 4.3.1). Again, the remaining three subjects do not violate the
axioms of reflexivity, transitivity, and antisymmetry systematically. Violating
antisymmetry (Subjects 5, 7, and 8) implies that synonymy does not refer to
the whole context, the set B. This means that there are a,b € B with a = b
and b > a, but not a ~ b (see Definition 4.4.1). Because Subject 6 extensively
uses synonyms in Experiment 1, the respective data could not be formalized by
an algebraic operation. However, there is a join semilattice representation for
the results of Experiment 2. Subject 2 violates the representation conditions
for Experiment 1, but also satisfies the axioms in Experiment 2.

Let us now have a look at the individual semantic structures. The following
Hasse diagrams illustrate the semantic structures of Subjects 1, 4, and 3, re-
sulting from Experiment 1. The semantic structure of Subject 7 is isomorphic
to that of the Subjects 1 and 4.

person

elder male younger
person . person ‘ person
man woman, elder boy girl

female person

Figure 4.5. Semantic structure of Subject 1.

It is worth mentioning that only the Hasse diagram of Subject 3 is a rooted
tree. The semantic structures of the remaining subjects cannot be represented
by a rooted tree. Table 4.6 provides an example for a formal context, which is
derived from the semantic structure of Subject 4. The formal contexts for the
semantic structures of Subjects 1 and 7 are essentially the same as Table 4.6.
For Subject 3, only the last column is present.

The Hasse diagram in Figure 4.8 illustrates the results of Subject 2 in
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person

adult young
person person
man woInarn boy gil‘].
Figure 4.6. Semantic structure of Subject 4.
person
child
man woman boy girl

Figure 4.7. Semantic structure of Subject 3.

Experiment 2. Figure 4.9 and Table 4.7 present the results of Subject 6. Ex-
periment 1 could not be finished regularly in this case because of the steadily
growing number of distinct answers. However, the Hasse diagram in Figure 4.9
impressively demonstrates that the subject’s behavior has not been chaotic. On
the contrary, Subject 6 consistently generalized from the concepts presented
in Experiment 1 with probably two exceptions. The answers young man and
young woman result from generalizing the concepts boy and girl, respectively.
In Experiment 2, however, they are incompatible to boy and girl, but are hy-
ponymous to man and woman.

Figure 4.10 presents an example of a concept lattice derived from the join
semilattice representation of semantic structures. The Hasse diagram corre-
sponds to the semantic structures of Subjects 2 and 6.

Consider the data of Experiment 1 (except for Subject 6), which reveal
that all but one answer (the noun child in the semantic structure of Sub-
ject 3) contains the noun person, which is the greatest element in the semantic
structures. The concepts hyponymous to it are denoted by a combination of

Table 4.6. Formal context derived from the semantic structure of Subject 4.

sex age
male | female | adult | young

man X X

woman X X

boy X X

girl X X
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person

man woInan b oy gll'l

Figure 4.8. Semantic structure of Subject 2.

Figure 4.9. Semantic structure of Subject 6. The labels refer to the numbers of
the equivalence classes of contextual synonyms in Table 4.7.

one or more adjectives and the noun person, like young person. This may be
because the noun person denotes a basic level concept (Rosch, 1978) in the
conceptual hierarchies of the semantic structures. A basic level concept has
the most inclusive extent with objects having a lot of attributes in common.
Subordinated concepts do not have significantly more attributes in common,
and superordinated concepts only very few. It seems that, at least within the

SN

Figure 4.10. Concept lattice corresponding to the semantic structures of Subjects
2 and 6.

girl
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Table 4.7. Equivalence classes of contextual synonyms from the semantic structure
of Subject 6. The numbers refer to the labels in Figure 4.9.

Number | Equivalence class of contextual synonyms

1 | young man

2 | boy

3 | girl

4 | young woman, young female human being

5 | man

6 | male young person, young male person,
young male human being

7 | young female person

8 | woman

9 | young male being, young male living being

10 | male person

11 | young person, young human being

12 | young female living being

13 | female person, female human living being,
female human being

14 | male being

15 | young living being

16 | person

17 | female being, female living being

18 | living being

present experimental paradigm, the subjects always start from the basic level
concept and express additional common attributes by adding adjectives. An-
other remarkable result shows up in the data of the Subjects 2, 3, and 6. The
superordinate to man and woman is not adult or any synonym, but person.
This again may result from the predominance of the basic level concept person
and its intimate relation to the prototypically exemplars denoted by man and
woman (cf. Rosch, 1978).

4.5 General discussion

The preceding sections proposed a method for assessing semantic structures,
and presented a lattice-theoretic representation of semantic features.

The method differs from other psychological methods serving this purpose
in at least three respects. First, it is designed to assess individual semantic
structures, and does not depend on pooling the data of different subjects. Sec-
ond, the method is not based on global judgments of similarity of meaning, but
on semantic generalization. Subjects are asked to respond with a noun phrase
expressing the shared features of two given nouns. The method thus directly
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aims at a feature representation of the meaning of nouns, and does not run
into the difficulties, the models based on proximity data are confronted with
(see Section 4.2). Third, the theory is formulated according to the principles
of measurement theory. This means that the assumptions, the feature rep-
resentation relies on, are explicitly stated as empirically testable conditions.
The results of the reported experiments show that these conditions are not too
restrictive.

The lattice-theoretic representation of semantic structures is motivated
twice. It is established by considering the ordinal properties of the semantic
relation of hyponymy (Sections 4.3.1 and 4.3.2), and it is induced by any assign-
ment of semantic features (Section 4.3.3). Kintsch (1972), however, pointed
out that the first argument may be problematic. If we consider the ordinal
properties of hyponymy on the set of all nouns, then the existence of least up-
per bounds is by no means guaranteed. The example in Figure 4.11 illustrates
this objection. No least upper bound exists for dog and cat, since there is no
noun denoting the conceptual extent, which in the example consists of dog and
cat.

animal

mammal pet

lyon dog turtle

Figure 4.11. Example from Kintsch (1972).

However, this criticism does not apply to the proposed method. On the
one hand, the method is not confined to the set of nouns, but to a set of noun
phrases, like mammalian pet. On the other hand, the measurement-theoretic
foundation of the lattice representation assures that its empirical assumptions
may be tested in any individual case. If these assumptions are satisfied, then
a join semilattice representation exists. The data presented in the preceding
section show that a lattice-theoretic representation of semantic structures is
adequate for empirical reasons.

It is nevertheless desirable to have a method for assessing semantic struc-
tures, which does not rely on verbal reports, and thus avoids the above men-
tioned problems. Heller (1991) has recently proposed a method that is based
on yes-no judgments. Subjects are asked questions like:

Do orange and grapefruit have any features in common, which are
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not shared by apple?

Founded on theoretical results of the theory of knowledge spaces (Koppen &
Doignon, 1990), Heller provides a lattice-theoretic representation of the data
resulting from such an experimental paradigm. The semantic structures of a
number of domains have already been investigated by this method. Current
experiments are concerned with the relationship of the respective results to the
feature representations obtained by similarity judgments. This research is still
in progress.
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5.1 Knowledge representation — the problem of for-
mation and transformation

It is a central problem in cognitive psychology to identify basic components in
processes of formation and transformation of internal representations. Oper-
ations on internal representations are essential in different fields of cognitive
psychology, e. g. in text comprehension and text processing, problem solving,
cognitive development, diagnostics, and differential psychology. Thus Kintsch
and van Dijk (1978) and van Dijk and Kintsch (1983) identified cognitive op-
erations for the generation of knowledge representations that are typical for
processes in text comprehension and text processing, such as operations for
generating hierarchies of propositions and for the formation of macro propo-
sitions. Parts of the approach of Kintsch and van Dijk could be specified
by experimental results of Beyer (1986). Also the analyses of Schnotz, Ball-
staedt, and Mandl (1981), Garrod and Sanford (1981), and Ehrlich (1982)
are directed to the identification of general cognitive principles in this field.
Schnotz (1988) investigated text comprehension as formation of mental mod-
els (Johnson-Laird, 1983). The papers of Rickheit (1991) and Strohner (1991)
are based on the idea of mental model formation too. Thereby the question
for the basic structure of mental models and for operations for its formation
as well as the problem of an adequate formalization are of great importance.
Also in problem solving operations for formation and transformation of
internal representations are a wide field of investigation. Sydow (1970) ana-
lyzed methods for detecting subjective problem states and its change in the
solution process. In different experiments Krause (1970) determined cognitive
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conditions for the relationship between internal representations and cognitive
operations applicable in an effective way. In Klix (1971, 1984) essential com-
ponents in thinking processes like formation and combination of features as
well as processes of abstraction on concepts and operations are described, and
their influence on the problem solving process is analyzed. Processes of gen-
eralization and differentiation are also discussed and investigated in Dorner
(1974, 1976) and Anderson (1976, 1983, 1985, 1988). In Krause (1982) and
Krause et al. (1986) task dependent structuring of internal representations is
analyzed. Thereby in different experiments an effective task dependent struc-
turing of new information as well as an effective task dependent restructuring
of knowledge could be shown (Krause, Sommerfeld, 1988).

Operations for formation and transformation of internal representations
are also important in cognitive development (cf. Keil, 1986; Schmidt & Sydow,
1981; Mandler, 1983; Hagendorf, 1985) as well as in differential psychology
and diagnostics (cf. Berg & Schaarschmidt, 1984; Berg, 1991). From this
point of view one of the main problems in mathematical modeling of cognitive
processes is to provide an adequate description of internal representations and
operations on internal representations that are fundamental components in
different cognitive processes (cf. Spada, 1976; Kluwe & Spada, 1981; Johnson-
Laird, 1983; Klimesch, 1988; Mandl & Spada, 1989).

Obviously, such internal representations are of central importance, which
represent not only information about elements and their features, but informa-
tion which is determined by certain relations between these elements. Exam-
ples for such relations are grammatical relations between the words of a text
or spatial relations between the parts of a picture. This kind of information is
called structured or structural information (cf. Klix, 1971, 1980).

Within the information processing approach we want to investigate the
problem of transfer and processing of structural information. There are ex-
ternal as well as internal representations of structural information. Internal
representations are cognitive structures. External representations are for ex-
ample texts or pictures.

Formation and transformation of cognitive structures are connected with
processes changing as well the represented structural information as the repre-
senting structure. Therefore we have to formalize both structure and structural
information.

5.2 Graphs and structural information in knowledge
psychology

In cognitive psychology there is a number of approaches using graph theory to
describe knowledge structures and search processes within structures.

A wide field of application of graph theory in cognitive psychology is the
representation of knowledge structures. In connection with the question for the
organization of knowledge structures the concept “semantic network” plays
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a central role. In the type/token model Collins and Quillian (1969, 1972)
represent super-sub-concept relations (see also Collins & Loftus, 1975; Aebli,
1981). Rumelhart, Lindsay, and Norman (1972) developed a model for the
representation of situational relations. Thereby the actions are of essential
importance. Anderson and Bower (1973) and Anderson (1983) give model
approaches for the representation of hierarchical structured declarative and
procedural knowledge. In opposite to this approach Klimesch (1988) analyzes
a nonhierarchical connectivity model with structured vertices which represent
structured components of knowledge. Klix (1989) distinguishes between object-
related and event-related knowledge. Thereby the vertices of a graph represent
concepts and the edges represent different relations. The experimental evidence
of such representations has been shown.

The central concept of the theory of Falmagne and Doignon (1988) and
Doignon (this volume) is that the knowledge state of a subject (with regard
to a specified field of information) can be described by a particular subset of
questions or problems (in that field) that the subject is capable of solving. The
family of all knowledge states (described by the vertices of a representing graph)
forms the knowledge space. Connections between knowledge states (described
by the edges of the representing graph) indicate inclusion relations with respect
to the capability to solve certain problems. Falmagne and Doignon not only
use graphs for the representation of knowledge structures but they describe
a theory for an efficient assessment of knowledge. Further investigations to
formalize knowledge structures can be found in Heller (this volume).

Often problem solving processes are investigated as searching processes
through a problem space represented by a graph. The vertices represent (ex-
ternal or internal) problem states and the edges represent transformations of
a given state into another one (cf. Duncker, 1935; Mesarovic, 1965; Klix &
Goede, 1968; Krause, 1970; Sydow, 1970; Krause et al., 1986).

To make exact statements about formation and transformation of cognitive
structures it is necessary to exactly describe operations on cognitive structures.
In Klix and Krause (1969) the concept “structure” in psychology is related to
the concept “graph” and “adjacency matrix”, and in this connection, opera-
tions on such structures are related to matrix operations. For certain problem
classes Sydow (1980) and Sydow and Petzold (1981) demonstrated possibilities
for modeling problems and problem solving processes on the basis of graphs
and graph products. Nenniger (1980) applied graph theoretical principles for
the formalization of special structure transformations in educational psychol-
ogy. Strube (1985) modeled biographical knowledge on the basis of comparison
and transformation of structures, formalized by special operations on graphs.

There are several approaches for the formalization of the concept of infor-
mation. Shannon’s classical information theory (Shannon & Weaver, 1949) is
not useful for describing and measuring structural information. A concept for
formalization of information on the basis of structural aspects was given by
MacKay (1950). In relation to this concept Leeuwenberg (1968) introduced
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the “structural information load” as a measure of the information of a per-
ceptive pattern. It is determined by the number of operations necessary to
recognize this pattern. Obviously, the “structural information load” is a mea-
sure of complexity. Leeuwenberg (1968) and Buffart and Leeuwenberg (1983)
developed their “structural information theory” especially for pattern percep-
tion processes. Some aspects of this approach are used as a basis for our
investigations.

It is necessary to investigate more general aspects of structural information
in formation and transformation of internal representations. Both qualitative
and quantitative differences between external given and internal represented
information have to be exactly described. Furthermore the analysis and formal-
ization of different interpretations of one and the same external representation
of a structural information is of importance. For example this plays a role for
the investigation of processes of text understanding and problem solving.

Our investigations to modelize operations on cognitive structures continue
the idea of modeling special important classes of cognitive operations on the
basis of graph theoretical principles (Sommerfeld & Sobik, 1986). Thereby we
have to formalize transformations of external given pieces of information to
an internal representation of this information as well as transformations of an
internal representation into another one.

In this connection it is essential to have an appropriate theory which gives
the possibility of characterizing that part of given information which a subject
has transformed and represented internally. Moreover it is important whether
the information content is changed or not and in the case of change whether
it is enlarged or reduced. The internal represented information and its infor-
mation content are fundamental components in analyzing thinking processes.
For example, in diagnostics by means of learning tests it is of importance to
know what information the subject has gained.

5.3 Structural information — representation and in-
terpretation

If we want to investigate processes of mapping and processing of structural
information we have to take into consideration that information processing
is an active process which is determined by the subject. Thus one and the
same external representation of a structural information, for example a text
or a picture, can be interpreted in a different manner and therefore internally
represented in a different manner too. This can be influenced by the context
or by certain preknowledge but also by personality factors or motivational
components.

Is it possible to formalize the interpretation of texts or pictures with the aim
of a formalization of qualitative and and quantitative differences of structural
information?

To make a contribution for answering this question it is necessary to specify
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the concept of structural information.

For this purpose we have to formalize both a structure representing a piece
of structural information and different interpretations in the process of the
formation of an internal representation on the basis of a piece of external
represented structural information.

In the following we want to discuss a formal approach. Based on the for-
malization of a structure representing structural information a formalization
for an interpretation system is introduced. On the basis of this approach it is
possible to describe qualitative and quantitative differences between external
given and internal represented structural information. Let us begin with the
formal description of a structure.

Structural information can be represented by a structure. A structure can
be described by means of a relational algebra. Thereby the elements of the
structure correspond to the elements of the carrier set of the relational algebra
and the relations between the elements of the structure correspond to the
relations of the relational algebra. If the set of relations contains only one- and
two-figure relations, we can describe such a structure by a graph.

DEeFINITION 5.3.1 G = (V, E, f,g, Wy, Wg) is a (finite, labeled, directed)
graph iff V' is a finite nonempty set and £ C V x V', and Wy, and W are power
sets of nonempty sets Wy and Wi, and f:V — Wy and g: V xV — Wg are
functions of V' into Wy and V x V into W, respectively. Thereby we have
9((u,v)) =0 if (u,v) ¢ E.

The graph G' = (V' E', f', ', Wy, Wg) is a subgraph of G iff V' C V and
E' C EN(V'x V'), and the functions f" and ¢ are restrictions of f on V' and
g on £’ respectively, with

J(e) = { gle), ifeec E'

. fi ! ‘.
(), otherwise orany e € V' x V

G’ is an induced subgraph of G ifft E' = E N (V' x V'). Thereby G =p.;.
G(V") = G{ E*) is induced by the vertex set V' or by an edge set E* C E’ with
the property that for any u € V' there exists a vertex v € V'’ with (u,v) € E*
or (v,u) € E*.

The order | G| =ps.| V| of a graph G is the number of its vertices. O

REMARK 5.3.1 V is the vertex set and E is the edge set of G. The vertices
represent the basic elements of a cognitive structure and the edges represent
the relations between these basic elements. Wy and Wy are sets of possible
labels of vertices and edges. Wy and Wy contain at least all image points
of the functions f and g, respectively. Thereby we assume that these labels
represent sets of elementary properties. By means of these labels different
types of elements and different relations can be distinguished. Subgraphs and
induced subgraphs can represent certain parts of a cognitive structure. Such
substructures are important in processes of selecting relevant information, for
instance if not the complete given piece of information is necessary for solving
the problem under consideration.
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r {b c}

rs}

G

{a,b,c}

G =({1,2,34}, {(1,2).(1.3),(1,4),(2,1),(4.3)}f, 9)

with: (1) = {b} 9((1,2)) = {s}
f(2) = {b,c} g((1,3)) = {s}
f(3) = {b} g((1,4)) ={r}
f(4) = {a,b,c} g((2,1)) = {r}
g((4,3)) = {r,s}.
and MV — {ab,c}
and M; = {rs}

Figure 5.1. A graph G and its formal description.

Usually in classical graph theory investigations are restricted to unlabeled
graphs, i.e. there are no functions f and g and no label sets Wy, and Wg and
an unlabeled graph is determined only by its vertex set V and its edge set £
(cf. Harary, 1969). A possibility to describe an unlabeled graph by means of
Definition 5.3.1 is to use the label sets Wy = {‘is a vertex’} and Wg = {‘is an
edge’}. 0

ExXAMPLE 5.3.1 In Figure 5.1 you can see a graph and its formal descrip-
tion. Figure 5.2 shows a graph and its transformation to a more abstract
representation. Both graphs can be used as representation of the same struc-
tural information. a

In the following we fix the sets Wy and Wy of vertex and edge labels and
write for a graph G = (V, E, f, g, Wy, Wg) only the short form G = (V, E, f, g).

EXERCISE 5.3.1 Give the formal description of the graph G in Figure 5.3.
O

EXERCISE 5.3.2
a) Give the vertex sets and edge sets of the graphs G; = (V4, E1, f1,91),
Gy = (Va, By, fa, 92) and Gz = (V5, B3, f3, g3) in Figure 5.4.
b) Is one of these graphs an induced subgraph of another one? Give the in-
ducing vertex set V' and an inducing edge set E* such that G = G( V")
G(E*) with 7,j € {1,2,3}.

o
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{Christoph, {Eddy,
man} man}
@ {sleeps longer than} @

{sleeps longer than,
is more tired than}

3 @

{Andreas, {Conny,
man, young} woman}

G

{sleeps
longer than}

¥

a: Christoph b: Eddy c: Conny d: Andreas
e:man f:woman g:young

r: sleeps longer than

s: is more tired than

{a,e} o {b,e}
{r.s}

YW

{d.e.g} cf

*

G

Figure 5.2. Two graphs which can represent equivalent structural information.

{bé%} (60} {b}
{90}
@ {70}
{r.a} {ry
G

Figure 5.3. Graph G for Exercise 5.3.1.

After the formal description of a structure representing a structural infor-
mation it is necessary to specify the concept of information represented by
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G, Gs
Figure 5.4. Graphs for Exercise 5.3.2.

means of a certain structure.

The structural information content of a structure is the knowledge about
the existence of certain relations between elements of this structure, based on
existing connections and labelings. In opposite to Shannon’s information mea-
sure and Leeuwenberg’s structural information load the structural information
content is not a number, it is given by a set of interpretations. There is a
partial order between different pieces of structural information given by the
relation of set inclusion.

On the basis of this relation it is possible to compare certain pieces of
structural information, but we cannot compare arbitrary pieces of structural
information. The structural information content depends on the kind of in-
terpretation of the given structure. Thus at first we have to give a formal
description of this kind of interpretation: the definition of an interpretation
system. On the basis of this definition we can define the structural informa-
tion content.

DEFINITION 5.3.2 Let G be a set of graphs. The tuple Int = (J,C, s,t) is
called an interpretation system of G, if for any graph G = (V. E, f,g) € G the
following conditions hold
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— J is a set of possible interpretations,

— (C C J is a set of contradictory interpretations,

— s is a function from G into the set V* of all finite sequences of vertices of
G,i.e., s(G) CV*

— t is a function from s(G) into J, i.e., for any w € s(G) we have t(w) € J.

For any graph G' € G we define the structural information content of G with
respect to the interpretation system Int = (J,C, s, t) to be

I(G, Int) =per. {t(w)|w € s(G),t(w) ¢ C}.
The structural information content of the set G is defined to be
I(Q, ]Tlt) = Def. U I(G, Int)
Geg
The structural information content I(G, Int) of a graph G is called greater

than the structural information content I(H, Int) of a graph H iff I(G, Int) is
a proper subset of I(H, Int), i.e.

I(G, Int) < I(H, Int) < I(G, Int) C I(H, Int). O

REMARK 5.3.2 The set J contains all possible interpretations of the struc-
tures under consideration, for example all correct sentences of a certain lan-
guage. The set C' of contradictory interpretations contains all semantically
impossible interpretations, for example syntactically correct sentences saying
nonsense. By means of the selection function s certain sequences of vertices
(representing elementary objects) are selected on the basis of structural prop-
erties of the representing structure. The interpretation function t gives for all
selected sequences of vertices an interpretation. O

EXAMPLE 5.3.2 Here we want to select from a given graph G = (V, E, f, g)
all sequences of two vertices u,v € V' which are connected by an edge (u,v) €
E.ie., s(G) ={(u,v)|(u,v) € E}.

The interpretation of such a pair (u,v) of vertices is given by a sentence
from a certain simple language which states that an element with the property
x is in relation z to an element with the property y, where x and y are vertex
labels and z is an edge label, i.e., J = {“An element with the property z is in
relation z to an element with the property y.” |z,y € Wy, z € Wg}. A possible
interpretation function is t((u,v)) = “An element with the property f(u) is in
the relation g((u,v)) to an element with the property f(v).”. An example is a
sentence like “An element with the property ‘child’ is in the relation ‘younger
than’ to an element with the property ‘adult’”.

The set C' of contradictory interpretations could contain for example such
sentences like “An element with the property ‘mosquito’ is in the relation
‘greater than’ to an element with the property ‘elephant’”. O

Now let us consider some selection functions s for a given set G of graphs.
The first function we already used in the example given above. We select
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all ordered pairs of vertices which are connected by an edge. For any graph
G=(V,E, f, g) € G we define

5.(G) = {(u,v)|(u,v) € B}.
By the function s, all ordered pairs of vertices which are not connected in the
graph are not contained in the selection. Sometimes it will be useful also to
take into account explicitly these vertices. This can be done by the following
selection function

$o(G) = {(u,v)|u,v € V}.

The following examples of selection functions are based on graph theoretical
properties. At first we can choose all paths in G:

sp(G) = {(v1, ..., vm)|v1, o, U €V, (1, ..., 0p,) Is @ path in G, i.e.,
(vi,vi41) € Eforalli=1,...,m—1}.

We can restrict our selection to the maximal paths in G, i.e., to all pathes
(v1, ..., V) such that there exists no v,,41 € V, that (v1, ..., Uy, Ume1) is a path
in G:

Spmaz(G) = {(v1, ..., vm)|(v1, ..., vy,) is & path in G,
there exists no v € V with (v,v) € E}.

Another possibility is to select all circles in G, i.e., all pathes (vy, ..., v,,)

such that there exists an edge (v, v1) in G:
s¢.(G) = {(v1,...,vm)|(v1, ..., ) is & path in G,
(Um,v1) € E}.

And now we consider two examples of interpretation functions for the se-
lection function s.. The first one results in the reduction of the sentences given
by the interpretation function in Example 5.3.2 to its essential components:
the properties of the elements and the relations between them. This gives the
set

Je - {(Iﬂya Z>|«'E7y € WV>Z € WE}
of possible interpretations and for any graph G = (V, E, f,g) and any pair
(u,v) € s.(G) we define

te((uu U)) - (f(u)v f(v)a g((u7 U)))

The second interpretation function includes more relational context of the
elements:

EXERCISE 5.3.3 Give a possible complete interpretation system for the
interpretation function t,,. O

ExAMPLE 5.3.3 Often not all labels which are contained in the represent-
ing graph G are of interest. Here we want to give an example for a special
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(ra} (g, {bd}

©) (2)

{S,} {s.S,}

@ ©

{d} {ra}

Figure 5.5. The graph for Exercise 5.3.4.

interpretation system in which only one relation is of importance. This rela-
tion is represented by edges with the label r € Wg. As the selection function
we choose again s.. Using the set J. of possible interpretations we have the
interpretation system

Int{r} = (']ea Ca Se, t{?“})
with

tey((w,v)) = (f(w), f(v), g((w, v)) N {r})

for all edges (u,v) contained in s.(G). O

EXERCISE 5.3.4
a) The structural information content I(G, Int.) with Int. = (J.,C, s, t.)
and C = () of the graph in Figure 5.5 is to be determined.
b) The structural information content I(G, Int(g,y) with C' = ) of the graph
in Figure 5.5 is to be determined. O

EXERCISE 5.3.5 The structural information content [(G, Int.) with
C = 0 of the graph set G in Figure 5.6 is to be determined. O

ExXAMPLE 5.3.4 Now we want to give an example for the application of
the formal approach. In Figure 5.7 we give a text and a related representing
graph. Thereby the names of the persons are not included in the vertex labels.

We are able to formalize different possibilities for the interpretation of
this text by application of different interpretation systems to the represent-
ing graph. Here we choose two selection functions and two interpretation
functions. At first we consider the selection function s, selecting the set of all
connected ordered pairs of vertices. The second selection function s, selects a
certain subset of this set.
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{e}

{d}

Figure 5.6. Set G of graphs for Exercise 5.3.5.

The considered interpretation functions ¢, and t,, take into account differ-
ent levels of relational context. These selection and interpretation functions
are presented in paragraph 5.3. They are parts of the interpretation systems
presented in paragraph 5.3. Also the determination of the structural informa-
tion content with respect to these interpretation systems is demonstrated in
this Figure. O

Application of different selection functions and interpretation func-
tions to the graph G in Figure 5.7.

selection functions:

Se(G) = {(u,v) | (u,v) € E} (set of all connected pairs of vertices)

s5H(G) = {(u,v) | (u,v) € E, f(u) = {physician}} (set of all connected pairs
of vertices, for which the first vertex is labeled by ‘physician’)

in the given example:

se(G) ={(H, E),(H,P),(H,T),(E,T),(P,H)}

s¢(G)={(H,E),(H,P),(HT)}

e

interpretation functions:
te((u,v)) = (f(u), f(v); g((u,v)))

bn((1,0)) = (F(w), (F(0); ( ) o) )>

in the given example:
te((H, P)) =({physician},{patient, influenza}; {treats, informs})

tm((H, P)) =({physician},{patient,influenza}; ( w{f{;ﬁiﬁzﬁsé}r;form%} >)

Determination of structural information content with respect to dif-
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Given information:

Harry is a physician. He treats Paul, Theo and Ernest.
Paul has influenza. He is the father of Harry.

Theo has a fracture. Harry informs Theo and Paul.
Ernest has influenza. He writes to Theo.

{physician} {patient, influenza}
{treats, informs}

H) < 10

{father of}

{treats} {treats, informs}

3

{patient, influenza} {patient, fracture}

Figure 5.7. Example for a text and a representing graph as basis for different

{writes to}

selection functions and interpretation functions (paragraph 5.3) and for the deter-
mination of structural information content with respect to different interpretation
systems (paragraph 5.3).
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ferent interpretation systems.

interpretation systems:

Intl = (J., 0, s, te)
nt2 = (J.,0, s, t.)

’ el

Int3 = (Je, 0, %, t,)

) “el

structural information content of G with respect to these interpre-
tation systems:

I(G, Int1) = {({physician}, {patient, influenza}; {treats}),
({physician}, {patient, influenza}; {treats, informs}),
({physician, patient, fracture}; {treats, informs}),
({patient, influenza}, {physician }; {fatherof}),
({patient, influenza}, { patient, fracture}; {wrightsto})}

I(G, Int2) = {({physician}, {patient, influenza}; {treats}),
({physician}, {patient, influenza}; {treats, informs}),
({physician}, {patient, fracture}; {treats, informs})}

I(G, Int3) =

{({physician}, {patient, influenza}; ( g {treq)ats} )),

- o _ 0 {treats,informs}
({physician}, {patient, influenza}; ( {father of} 0 ),
({physician}, {patient, fracture}; < (QD) {treats,z})nforms} ))}

I(G,Intl) D I(G,Int2) <= I(G,Intl) > I(G,Int2)
(comparable pieces of information)

2 #
I(G,Intl) ¢ I(G,Int3) <= I(G,Intl) £ I(G,Int3)
/ /
(incomparable pieces of information)
2 #
I(G,Int2) ¢ I(G,Int3) < I(G,Int2) £ I(G,Int3)
/ /

(incomparable pieces of information)

REMARK 5.3.3 By means of Example 5.3.4 the concept of comparable and
incomparable pieces of information is demonstrated. In the case of comparable
pieces of information quantitative differences can be evaluated on the basis of
the cardinality of sets of interpretations. O

With this formal approach we have a basis for formalizing qualitative and
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quantitative differences of structural information content in processes of forma-
tion and transformation of cognitive structures. Now we want to systematize
and formally describe operations for the formation and transformation of in-
ternal representations, based on external structural information.

5.4 Systematization and formalization of cognitive
structure transformations

A fundamental situation of psychological relevance is the following one. The
cognitive system gets an input information, for instance a text or a picture,
which also can contain information about a specified cognitive problem to be
solved. For processing this information, for example to understand a text
or to solve a given problem, the cognitive system has to generate an internal
representation of the information that is externally given, i. e. it has to generate
a representing cognitive structure. This situation is characterized in Figure 5.8.

external
information
internal internal
representation representation
(cognitive (cognitive
structure) structure)
control parameters reaction

Figure 5.8. Formation and transformation of cognitive structures.

Cognitive processes of formation and transformation of internal represen-
tations are connected with processes of selection, structuring, and inference
of information, as well as with processes of integration of external given and
inferred information into knowledge structures. This is related to processes of
knowledge activation, knowledge acquisition, and restructuring of knowledge.
In Klix (1971, 1983, 1989), Lompscher (1972), Dérner (1976), and Mehlhorn
and Mehlhorn (1985) overviews about cognitive operations in these processes
are given. Such operations are for example selection, inference, elaboration,
integration and restructuring of information.
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It is our aim to formalize such basic cognitive operations to generate the
basis for a systematization of hypotheses about formation and transformation
of internal representations for different cognitive tasks. Therefore a system-
atization as well as a formalization of cognitive structure transformations is
necessary. On the one hand such a systematization must include operations of
psychological relevance, on the other hand it must be complete under certain
restrictions.

To reach these two aims we have taken into consideration all changes of in-
formation characterized by means of reduction or enlargement of structural in-
formation content in combination with all changes of the representing structure
characterized by means of deleting or adding of substructures. Thus against
the background of the two properties “structure” and “information” of struc-
tural information, we have to analyze two aspects of the transformation of a
structure (which represents certain structural information): the influence on
the structure, and the influence on the information. This gives us the oppor-
tunity for discussing relationships between structure and information.

Beside such a systematization of cognitive structure transformations also
a systematization of graph transformations has been carried out for the pur-
pose of formalization. Formalization of cognitive structure transformations is
a precondition for an exact description of cognitive processes as well as a basis
for modeling and simulation, and by this also for the prediction of behavior.
Furthermore formalization is a basis for differentiations of cognitive operations
and for an analysis of cognitive aspects in detail.

Processes of formation and transformation of internal representations can
be accompanied by a reduction or an enlargement of information. Typical
cognitive transformations with a reduction of information are processes of se-
lection of information. Selection of information means that only a part of the
given external information will be represented internally. Inferred information
and its internal representation in combination with the given information char-
acterizes a cognitive structure transformation which results in an enlargement
of information.

Both types of changes of structural information content can be connected
with an enlargement or a reduction of the representing structure. Thus we
have to analyze transformations which enlarge or reduce the structural infor-
mation content in combination with possible enlargements or reductions of the
structure which represents this information. Furthermore these cases must be
combined with transformations that do not change the structural information
content or the structure, respectively. Thus we have a definite set of combi-
nations between variations of structure and information content. From this
point of view now we analyze cognitive structure transformations and graph
transformations for the purpose of their formalization.

At first it is necessary to ask for elementary graph transformations which
can be the basis for the formalization of cognitive structure transformations.
For this purpose we have investigated systematically the change of all param-
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eters characterizing a structure represented by a graph G = (V, E| f, g).

5.4.1 Elementary graph transformations

On the basis of enlargement or reduction of the sets V,E, f(v),g(e)
(v e VeeFE)ofagraph G = (V,E, f,g) we get the following set of ele-
mentary graph transformations.

DEFINITION 5.4.1 Let G = (V,E, f,g) and G' = (V' E’, f', ¢') be graphs.
G’ is obtained from G by application of the elementary graph transformation
of
— addition ¢, of a vertex v (v ¢ V) (with an empty label) iff

V' =VU{v},E'=E,¢ =gy,
0, ifu=w
! o ) 3
Jiu) = { f(u), otherwise
— addition ¢} of an edge e (e ¢ E) (with an empty label) iff
V'=V,E'=FEU{e}, f'=f,

/ 7‘f = G
g(h):{ 0, if h=c¢

g(h), otherwise
— addition gpvfMV of a vertex label MV € Wy to a vertex v € V' iff
VI=V,E'=E,g =y,

f)UMV, if u=w,
f(u), otherwise

for any u € V',
for any h € E',

for any u € V’,

-
— addition SO;ME of an edge label M E € Wg to an edge e € E iff
VI=V.E'=E, f =,

iy ) gle)UME, if h=e, ,
g'(h) = { g(h), otherwise for any h € E',
— deletion ¢, of an (isolated) vertex v € V (with an empty label) iff

f(v) =0 and
there exists no vertex u € V with (u,v) € FE or (v,u) € E,
V' =V\{v},E'=E,¢d =g, f(u) = f(u) for any u € V',
— deletion ¢_ of an edge e (e € E) (with an empty label) iff
g(e) =0 and
V'=V,E' =E\{e}, f'=f,g(h) = g(h) for any h € F',
— deletion ¢, of a vertex label MV € Wy from a vertex v € V' iff
V' =V.E'=E.g =g
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for any u € V',

£(w) :{ F)\ MV, if u=wv,

f(u), otherwise
— deletion ¢_ ), of an edge label ME € W from an edge e € F iff
VI=V.E =E.f =

iy ) 9@\ ME, if h=e, /
o= { g(h), otherwise for any h € E'. _

On the basis of combinations of these elementary graph transformations
we get more complex transformations. For instance an addition of a labeled
vertex or edge can be obtained by successive application of the elementary
transformations ;" and gofj’ vy Or ¢f and <p;M p, respectively.

Beside such changes of graph structures also operations for combining sev-
eral structures into one unit are of importance and therefore they must be
formalized. There exist different operations for the combination of graphs
(cf. for example Harary, 1969). As an important operation for the connection
of cognitive structures here we characterize the operation of graph union.

DEFINITION 5.4.2 Let G; = (V4, E1, f1,91) and Gy = (Va, Es, fa,92) be
graphs.
Then we define the union G, of G; and G4 to be the graph

Gu=G UGy = (V1 UVa, By UEs, fu,qu)

with
filv), ifveVivé Vs
fuv) =< falv), ifv g Vi,veV,
fi(v) U fa(v), otherwise

and

gi(e), if e € Ey,e ¢ Fy

gu(v) =1 gale), ifed Ey,e € Ey

g1(e) U go(e), otherwise
GG1 UG, is the operation of union of the graphs G; and G5, that means it is
the transformation of the graph set {G4, G2} into the united structure G; UG5.
For the transformation of G into Gy U G we write ¢ q,(G1) =per.G1 U Ga.
O

REMARK 5.4.1 A graph union can be obtained by successive application
of the elementary graph transformations ¢ of vertex addition, go;ﬁ v of vertex
label addition, ¢} of edge addition, and cp; w g of edge label addition. Because
the property of symmetry of the operation of set union holds ¢y g, (G2) =

SOU,G2<G1)- O

EXAMPLE 5.4.1 In Figure 5.9 you can see two examples of graph unions.
(I
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{taller than}

O—® @Q ©

{taller {faster {faster
than} than} than}

G, G,

{taller than}

O—@

{faster {taller than,
than} faster than}

G,UG,

{red} {blue} {triangle} {square}

O——0® @ @

ZON

1 ®
{green}

{hexagon}

{red, {blue,

triangle} square}
@—'?
{green} {hexagon} H 1 UH 2

Figure 5.9. Examples for the transformation of graph union.

EXERCISE 5.4.1 For the union G; U G5 of the graphs of Figure 5.10 give:
a) the drawing,

b) the formal description. O

Combinations of these elementary graph transformations give a basis for the
formalization of cognitive structure transformations which enlarge, reduce or do
not change the structural information content of a given structural information.

W} {W} {W.} {W,}
{n

O——2) (O

G, G,

Figure 5.10. Graphs G; and G4 for Exercise 5.4.1.
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Figure 5.11. Example for isomorphic mappings.

Thereby we restrict our considerations to interpretation systems of the form
Int, = (J, C, se, te).

5.4.2 Formalization of cognitive structure transformations without
change of structural information content

Transformations that do not effect any change in the structure and therefore
also do not effect any change of the information content, that means transfor-
mations that preserve both the structure and the information content, can be
described by an isomorphic mapping of two graphs.

DEFINITION 5.4.3 Let G = (V,E, f,g) and H = (V', E', f', ¢') be graphs.
G and H are isomorphic (G = H) iff there exists an one-to-one mapping k
from VUE onto V'UE' with k(v) € V' for any v € V, k(e) € E' for any e € E,
k((u,v)) = (k(u), k(v)) for any u,v € V and (u,v) € E, f(v) = f'(k(v)) for
any v € V and g(e) = ¢'(k(e)) for any e € E.

The isomorphism class of a graph G is the class of all possible graphs which
are isomorphic to G.

The transformation ¢, (G) =pes. H is called isomorphic mapping. O

EXAMPLE 5.4.2 In Figure 5.11 three isomorphic graphs and the corre-
sponding isomorphic mapping & is shown. O

EXERCISE 5.4.2 For the graphs G, H,, H,, Hs in Figure 5.12 give the
correct answer to the following questions:
a) G= Hy?
b) G = Hy?
C) G= Hg? (I
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{w,} {w.}
{wi} e {W,} {Ws} G {ws}

Ve SN AN

{Ws) W} W) 7wy

{W} {W }

W, } @\{Ws} {W } {Wz}

e L

{Wl} {W4} 6
(3)
{W;}
H, Hs

Figure 5.12. Graphs G, H1, Hy and Hjs for Exercise 5.4.2.

LEMMA 5.4.1 Let G = (V,E, f,g) be a graph. Then we have I(G, Int,.) =
I(¢s0(G), Int.). 0

Transformations which result in adding or deleting of structures without
changing the structural information content consist in adding or deleting re-
dundancy. They can be formalized on the basis of adding or deleting of graphs
which are isomorphic to parts of the original graph. If the following conditions
are fulfilled it is possible to describe such cognitive transformations by the
elementary graph transformations ¢, ¢, gpj, MV SO;ME and ¢, ¢, Co MV >
¢. e and by their combinations.

LEMMA 54.2 Let G = (V,E, f,g) be a graph. Then we have, if G' =
(VI E', f',g") denotes the graph obtained by application of the respective ele-
mentary graph transformation to G, the following results:

1. I(G, Int.) = I(¢) (G), Int.).
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I(G, Int.) = I(¢F (G), Int.) with e = (u,v) iff
(f'(u), f'(v),d'((u,v)) € C or there exists an edge (w,z) € E with
(f(w), f(2), g((w, 2))) = (f'(w), f'(v), g'((u,v)))-
I(G, Int.) = I(SO:JFMV(G)a Inte) iff
MV C f(v) or
for any (u,v) € E" with (f'(u), f'(v),9'((u,v))) ¢ C exists an edge
(w,2) € E with (f(w), f(2),9((w, 2))) = (f(u), f(v) UMV, g((u,v))) =
(f'(w), f'(v),g'((u,v))) and
for any (v,u) € E" with (f'(v), f'(u),¢'((v,u))) ¢ C exists an edge
(w,2) € B with (f(w), f(2), 9((w, 2))) = (f(v) UMV, f(u),g((v,u))) =
(f'(v), f'(u),g'((v,u))) and
for any (u,v) € E with (f(u), f(v),9((u,v))) ¢ C exists an edge
(10,2) € B with (/'(w), (2),9/((, 2))) = (F(u), (0), 9((u,0))) and
for any (v,u) € E with (f(v), f(u),g((v,u))) ¢ C exists an edge
(10,2) € B with ('(w), (2),9'((w, 2))) = (F(0), F(), 9((v, 0)))

[(f'(u), f'(v),d ((u,v))) € C or exists an edge (w, z) € E with (w, z) #
(u,v) and (f(w), f(2),9((w,2))) = (f(w), f(v),9((u,v)) U ME) =
(f'(u), f'(v), g'((w, v)))] and

[(f(u), f(v),9((u,v))) € C or exists an edge (w,z) € E with (w,z) #
(u,v) and (f(w), f(2), 9((w, 2))) = (f(u), f(v), g((u, v)))]]-

I(G, Int.) = I(¢, (G), Int.).

I(G, Int.) = I(¢. (G), Int.) with e = (u,v) iff

(f(u), f(v),g((u,v)) € C or there exists an edge (w,z) # (u,v) with

(w,2) € E and (f(w), f(2), g((w, 2))) = (f (), f(v), 9((u,v))).

I(G, Int.) = I(p, v (G), Int.) iff

MV N fv)=0 or

for any (u,v) € E" with (f'(u), f'(v),¢'((u,v))) ¢ C exists an edge

(w,2) € E with (f(w), f(2),9((w,2))) = (f(u), f(v) \ MV, g((u,v))) =

(F/(u), £/(0),g/((u,))) and

for any (v,u) € E" with (f'(v), f'(u),d'((v,u))) ¢ C exists an edge
9(w, 2

(w,2) € E with (f(w), f(2),9((w,2))) = (f(v) \ MV, f(u),g((v,u))) =

€ ( ¢ C exists an edge
(10,2) € B with ('(w), /(). 70), 9((u, 0))) and
€ ¢ C exists an edge
( , f(w), 9((v,u))).
I(G, Int.) = (¢, yp(G), Int.) with e = (u,v) iff
MEnNg(e) =0 or
[[(f"(w), f'(v),d' ((u,v))) € C or exists an edge (w, z) € E with (w, z) #
(w,0) and (F(w), F(2)g((w,2) = () f(0),g((u,0)) \ ME) =
(f'(w), f'(v), g'((u,v)))] and
[(f(u), f(v), g )) € C or exists an edge (w,z) € E with (w, z) #
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(u,v) and (f(w), f(2), 9((w, 2))) = (f (u), f(v), g((u, v)))]]. O

REMARK 5.4.2 By these elementary transformations and their combina-
tions (which change the structure but do not change the structural information
content) we enlarge or reduce the redundancy of the representing structure.
Isolated vertices, i.e., vertices v (also with nonempty label) for which do not
exist an edge (u,v) or an edge (v,u) are redundant, i.e., adding or deleting
of such isolated vertices does not change the structural information content
I(G, Int.) (1. and 5.).

With respect to the other elementary transformations it holds that for
any noncontradictory substructure of the original graph there must exist a
substructure of the generated graph G’ with the same structural information
content. Vice versa for any generated noncontradictory substructure of G’
there must exist a substructure of the original graph G with the same structural
information content.

For the cases 2., 4., 6., 8. we can state that if a noncontradictory substruc-
ture of the graph is changed by a transformation there must exist an unchanged
substructure of the original graph with an equal structural information content
and for any generated noncontradictory substructure there must also exist a
substructure of the original graph with an equal structural information content.

O

Another case consists in a connection of different substructures without
changing the structural information content. Thereby different possibilities
for the connection of substructures exist. For example identical elements of
a structure can be connected by adding an edge representing this identity
(coherence graph, Kintsch, 1974). This can be described by means of a specific
combination of the graph transformations ¢ and ¢ 5.

Cognitive operations which combine different structures to a unit (without
changing the structural information content) can be formally described on the
basis of certain graph unions.

There are some special cases in which also the transformation of graph
union does not change the structural information content.

LEMMA 5.4.3 Let Gy = (Vi, Ey, f1,91) and Gy = (Va, Es, fa, g2) be graphs.
If Gy =2 Gy and ViNVy = then
I(Gy, Int.) = I(Gs, Int.) = (G U G, Int.).
If G5 is an induced subgraph of G then
I(Gy, Int.) = I(G1 U Ga, Int,). O

5.4.3 Formalization of cognitive structure transformations with en-
largement of structural information content

Cognitive structure transformations which result in an enlargement of struc-
tural information content characterize a relevant class of cognitive operations
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involved in generating or elaborating information (Posner, 1976; Rickheit &
Strohner, 1985; Krause, Sommerfeld, & Ziefller, 1991).

Transformations with enlargement of structure and with enlargement of
information content can be based on adding parts of knowledge structures
from long term memory (LTM) or on adding knowledge inferred on the basis
of rules stored in LTM. Adding of parts of knowledge structures can be based
for instance on concept structures, on situational structures, or structures that
characterize actions stored in LTM. Let us consider a simple example. If the
external information “tree” is given, in general, we activate in our LTM the
knowledge that a tree has branches and limbs, and add these properties to the
knowledge in our working memory.

Adding of knowledge inferred on the basis of rules stored in the LTM is
denoted as inference. Again a simple example. If the external information is
given by the propositions ‘a is greater than b” and ‘b is greater than ¢’ we can
use the knowledge that ‘greater’ is a transitive relation and can apply the rule
of transitive inference. By this rule we obtain the proposition ‘a is greater than
¢’. This inferred information can be added to the working memory.

This is the case for other types of inferences too. Thus analogical inferences
are a special case of cognitive processes with an enlargement of information.
The procedure of projection carried out in these processes (Klix, 1990) is based
on a mapping of structural properties of one domain of knowledge into another
one. The carrier structure of a given piece of information is connected with
new properties. If this new information is added to the knowledge about the
original information we have an enlargement of structural information content
in connection with an enlargement of the representing structure.

If the given and the added information are combined into a unit we get
an integrated cognitive structure: The external information (for instance a
set of propositions) is combined into a unit with the information gained (for
example a set of inferred propositions). Thus integration of information is a
cognitive operation that results in an enlargement of information content and
in a combination of different cognitive structures into a unit.

Beside this important type of cognitive structure transformations charac-
terized by an enlargement of both information content and structure we must
ask for possibilities of cognitive structure transformations with an enlargement
of structural information content but with a reduction of structure. A possibil-
ity for transformations with an enlargement of structural information content
but with a reduction of structure is the deletion of contradictions.

Transformations with an enlargement of structural information content
without changing the structure are impossible.

All these types of cognitive structure transformations can be formally de-
scribed by graph transformations with enlargement of structural information
content.

Graph transformations resulting in an enlargement of structural informa-
tion content on the basis of enlargement of the original graph are based on
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adding certain vertices, edges or labels to the original graph which are not in
contradiction to parts of the original graph.

Graph transformations resulting in an enlargement of structural informa-
tion content on the basis of a reduction of the original graph are based on
deleting certain vertices, edges or labels from the original graph, for example
that are in contradiction to other parts of the original graph.

Preconditions for such graph transformations can be obtained on the basis
of the elementary graph transformations described in 5.4.1. Analyses of these
transformations can be carried out in an analogous way to Lemma 5.4.2. Here
we want to give only a short characterization of this class of elementary graph
transformations. For a more detailed formal approach cf. Sommerfeld (1991).

By such elementary transformations and their combinations (which enlarge
or reduce the structure) we enlarge the structural information content of the
representing structure. Isolated vertices, i.e., vertices v (also with nonempty
label) for which do not exist an edge (u,v) or an edge (v, u) are redundant,
i.e., adding or deleting of such isolated vertices does not enlarge the structural
information content I(G, Int.).

In general on the one hand there must exist a noncontradictory substructure
of the generated graph G’ such that there does not exist a substructure of the
original graph G with the same structural information content. On the other
hand it is necessary that for any noncontradictory substructure of the original
graph GG there must exist a substructure of the generated graph G’ with the
same structural information content.

On the basis of such elementary graph transformations and their combi-
nations all types of cognitive structure transformations with enlargement of
structural information content discussed above can be formally described.

Here we want to define a combination which is very important for formaliz-
ing and modeling inference processes. The process of inferring all propositions
— based on certain properties of a given set of propositions — can be described
by means of the process of hull formation of graphs.

This graph transformation can be obtained by successive application of the
elementary graph transformations ¢ of edge addition and ng v of edge label
addition. Such a transformation can be realized step by step by means of a
generating transformation and a combining transformation. Here we want to
consider the transformation of transitive hull formation which is based on the
generating transformation of transitive supplement formation and the combin-
ing transformation of graph union.

DEFINITION 5.4.4 Let G = (V, E, f,g) be a graph with g(e) = {r} for all
e € Eand let GO = (V,EO® f ¢©) =@,

Fori=1,2,... we define Et(i) CV xV with:
For all v;,v;,v, € V holds: (v;,vx) € EY iff (vi,vj), (vj,v5) € ECY and
(vi,vx) ¢ EU"YD. Then we define G = (V;(i),Et(i),ft(i),ggi)) whereas V,*) is
the vertex set of the subgraph induced by Et(i) in G = (V,V xV, f* g%,
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{=>1:e® E= =% JU{—)
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{=}:E,

Figure 5.13. Example for the formation of transitive supplement and transitive
hull.

and ft(i)(v) = f(v) for all v € V;(i) and gt(i)(e) = {r} for all e € Et(i) and
GO =G UGy,

If £ = (), then the graph Gy =pes. GiVU...UGY ™ = (V, B, f, ¢), with
E, = t(l)U. : .UEt(i_l) is the transitive supplement of G, and the transformation
©1(G) =pes. Gy is called transitive supplement formation.

The graph Gpt =pes. GU Gy = (V. Ep, f, gne) with Epy = E U Ey is the
transitive hull of G and the transformation pp(G) =per. Gie is called transitive
hull formation. O

REMARK 5.4.3 The transitive supplement formation can be used to de-
scribe the information which can be obtained by application of the rule of
transitive inference to the original graph. The united given and inferred struc-
tural information can be characterized by means of the transitive hull. O

ExXAMPLE 5.4.3 In Figure 5.13 an example of transitive supplement for-
mation and transitive hull formation is presented. O

EXERCISE 5.4.3 Determine for the graph G = (V, E, f, g) in Figure 5.14:
a) GV, GP
b) the transitive supplement G,
¢) the transitive hull Gp,. 0

LEMMA 5.44 Let G = (V, E, f,g) be a graph with g(e) = {r} foralle € E,
let ppi(G) = Gpe be its transitive hull, and let ¢(G) = Gy = (V, E, f, gt)
be its transitive supplement. Then we have I(G,Int.) C I(Gp, Int.) and
[I(G, Int.) C I(Gp,Int.) iff there exists an edge e = (u,v) € E; with
(f(u), f(v), 9(e)) = (f(u), f(v),{r}) ¢ C]. O
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®)

@)
6) (5

Figure 5.14. Graph for Exercise 5.4.3.

REMARK 5.4.4 In general by application of transitive hull formation we
have an enlargement of structural information content. There are only a few
noninteresting cases without an enlargement: G = Gy, or all edges of the
transitive supplement (; are contradictory. O

By processes of supplement formation inferences can be formally described.
Processes of inference in connection with a combination of given and inferred
information to an integrated cognitive structure can be formalized on the basis
of hull formation processes.

5.4.4 Formalization of cognitive structure transformations with re-
duction of structural information content

Transformations reducing structure and information content play an important
role in task dependent selection of information because often it is sufficient to
select only a part of (externally given or internally stored or inferred) informa-
tion for solving a given problem.

As an example we want to consider a problem investigated in Klix (1983)
and Offenhaus (1984).

1= a1

::m Fi [T [T

Pll P12 P21 P22

Figure 5.15. Pattern combination of the experiment by Offenhaus (1984).

Two ordered pairs (Pyy, Pi2) and (Pyy, Pag) of geometrical patterns (con-
sisting of squares) with substructures (formed by these squares) are used in an
analogy task. In the geometrical pattern P;; a reflection at a certain symmetry
axis is carried out such that the result of this reflection is represented by the
geometrical pattern Pj,. Subjects have to decide whether or not in the second
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pair (Py1, Pyy) a reflection of Py was carried out at the same axis as in the
first pair resulting in Psy. To answer such a question for the correctness of an
analogy in general it is not necessary to use the complete geometrical pattern.
But it is sufficient to select specific subpatterns with the (important) property
to be not invariant with respect to the specific reflection carried out in the first
pair of patterns.

Such transformations result in a cognitive structure which represents the
input information in a reduced or condensed form. Possibilities for a general
or temporal reduction of structural information content are for example forget-
ting or nonactivating a piece of information from LTM or compressing certain
features or relations to a class feature. These transformations characterize
a wide field of operations of psychological relevance denoted for instance as
selection, elimination, substitution, symbolization or idealization of informa-
tion (cf. Klix, 1989, 1990; Mehlhorn & Mehlhorn, 1985) in combination with
connection or disconnection, addition or deletion of substructures.

Beside this we have to ask for cognitive structure transformations with a re-
duction of structural information content but with an enlargement of structure.
This is possible by adding contradictions to the representing structure.

A reduction of structural information content without change of structure
is impossible.

All these types of structure transformations can be formally described by
graph transformations with reduction of structural information content.

Graph transformations resulting in a reduction of structural information
content on the basis of a reduction of the original graph are based on delet-
ing certain vertices, edges or labels from the original graph, that are not in
contradiction to parts of the original graph.

Graph transformations resulting in a reduction of structural information
content on the basis of enlargement of the original graph are based on adding
specific vertices, edges or labels to the original graph which are for example in
contradiction to other parts of the original graph.

Preconditions for such graph transformations can be obtained on the basis
of the elementary graph transformations described in 5.4.1. Analyses of these
transformations can be carried out in an analogous way to Lemma 5.4.2. Here
we want to give only a short characterization of this class of elementary graph
transformations. For a more detailed formal approach cf. Sommerfeld (1991).

By such elementary transformations and their combinations (which enlarge
or reduce the structure) we reduce the structural information content of the
representing structure. Isolated vertices, i.e., vertices v for which do not exist
an edge (u,v) or an edge (v,u) (also with nonempty label) are redundant,
i.e., adding or deleting of such isolated vertices does not reduce the structural
information content I(G, Int.).

In general on the one hand there must exist a noncontradictory substructure
of the original graph G such that there does not exist a substructure of the
generated graph G’ with the same structural information content. On the
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other hand it is necessary that for any noncontradictory substructure of the
generated graph G’ there must exist a substructure of the original graph G
with the same structural information content.

On the basis of such elementary graph transformations and their com-
binations all types of cognitive structure transformations with reduction of
structural information content discussed above can be formally described.

Here we want to define combinations which are very important for formal-
izing and modeling processes of selection of information. Such transformations
can be realized step by step by disconnecting parts of the original graph and
by deleting vertices, edges or labels and are called graph coarsenings.

A simple transformation of this type is a coarsening by edge deletion. This
graph transformation can be obtained by successive application of the ele-
mentary graph transformations ¢,/ of edge label deletion and ¢_ of edge
deletion.

DEFINITION 5.4.5 Let G = (V, E, f,g) be a graph. For a (labeled) edge
e € E of G we define the graph G¢ =p.s. (V, E \ {e}, f,¢') whereas ¢’ is the
restriction of g to E \ {e}.

The transformation ¢¢(G) =p.s. G is called graph coarsening by edge dele-
tion. O

LEMMA 54.5 Let G = (V,E, f,g) be a graph and e = (u,v) € E. Then we
have I(G, Int.) 2 I(¢S(Q), Int.) and [I(G, Int.) D I(¢S(G), Int.) iff (f(u), f(v)
C' and there ezists no edge ¢’ = (v',v') € E\ e with (f(v'), f(v'),g(e")) =
(f (u), f(v), g(e))]. O

REMARK 5.4.5 In general by application of graph coarsenings by edge dele-
tion we have a reduction of structural information content. There are only a
few noninteresting cases without a reduction of structural information content:
if the edge e which is deleted from G is contradictory or there exists another
edge with the same structural information content. O

A certain class of graph coarsenings is based on partitions of the vertex set.
These graph coarsenings can be obtained by successive application of graph
coarsening by edge deletion.

DEFINITION 5.4.6 Let G = (V,E,f,g) be a graph. Let Py(G) =
{Vi,...,Viu} with V; CV (i =1,...,m) be a partition of the vertex set V' of
G. Let {G(V1),...,G(V,, )} be the set of subgraphs induced by the partition
classes of Py (G). We define the graph Gpy =pes. G(V1)U...UG(V,,).

The transformation ¢py (G) =per. Gpy is called graph coarsening by vertex
set partition. O

REMARK 5.4.6 This coarsening is obtained by the union of the subgraphs
induced by the partition classes. It is generated from G by deleting all edges
between these subgraphs. In this reduced graph there are no relations between
elements from different partition classes. O

)

g(e)) ¢
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LEMMA 5.4.6 Let G = (V,E, f,g) be a graph. Let Py(G) = {Vi,..., 1}
with V- CV; (i = 1 ..,m) be a partition of the vertex set V of G. Then we
have I(G, Int.) 2 I(¢py(G), Int.) and [I(G, Int.) D I(ppy(G), Int.) iff there
exists an edge e = (u,v) € E withuw € V; andv € V; for any i,5 € {1,...,m}
and V; # V; and (f(u), f(v),g(e)) ¢ C and there exists no edge e’ = (w, z) € E
with w,z € Vi, for k € {1,...,m} and (f(w), f(2),9(e)) = (f(u), f(v),g(e))].

O

REMARK 5.4.7 In general by application of graph coarsenings by vertex
set partition we have a reduction of structural information content. There are
only a few noninteresting cases without a reduction of structural information
content: for any edge between the partition classes holds that it is contradic-
tory or there exists an edge within a partition class with the same structural
information content. O

5.4.5 Formalization of cognitive structure transformations with en-
largement and reduction of structural information content

There exist a lot of transformations which result on the one hand in a reduction
of certain information content but on the other hand in an enlargement of
another specific information content.

An important case of a structure transformation which is a combination of
several transformations with reduction and enlargement of information content
generates a hierarchical structure. A hierarchical structure consists of different
levels of abstraction, each level represents only a part of the whole piece of
information. At an upper level only information about classes of substructures
is stored. The information about each of these substructures may be obtained
from a lower level. More abstract information about classes and relations
between classes can be gained through inference processes. The different levels
are generated by selection processes. In a lot of experimental investigations
the formation of hierarchical structures has been shown (cf. for instance Pliske
& Smith, 1979; Adelson, 1981; Maki, 1982; Krause, 1982; Krause et al. 1986;
Pohl, 1990).

These types of cognitive structure transformations can be formally de-
scribed by combinations of graph transformations with enlargement and re-
duction of structural information content.

Combinations of different graph transformations often can be characterized
by connecting several reduced and enlarged graphs.

Here we want to select some essential graph transformations for the formal
description of hierarchical structuring.

One possibility is the coarsening by identification of vertices. By applica-
tion of this transformation several vertices are contracted to one vertex. This
graph transformation is a combination of all types of elementary graph trans-
formations discussed above. It can be used for the formalization of processes
of compression of several features to one class feature (Klix, 1990).
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DEFINITION 5.4.7 Let G = (V. E, f,g) be a graph. For the vertex set
Vo ={v1,...,0} CV of G we define the graph G =p.r. (V', E', ', ¢') with

V! = V*U {%} and V* — Def. V \ ‘/07

E' = ENV*xV*
U{({Vo},w)|w € V* and exists u € V with (u,w) € E}
U{(w, {Vo})|w € V* and exists u € V; with (w,u) € E},

flo) U U fog), if w = {Vo}
/ _
flw) = { f(w), otherw1se
g((vh )) 'Ug((vlﬁw))v if e = ({%}7w)

g'(e) = { g((w,vm))U...Ug((w,v)), if e = (w,{Vo})
g(e), otherw1se

The transformation ¢yvo =pes. Gyo is called graph coarsening by vertex
identification. O

REMARK 5.4.8 In general on the one hand information about relations
between elements of the vertex set V) is lost. On the other hand information
about this set is obtained. O

The operation of graph coarsening by vertex identification is the basis for
an essential operation in hierarchical structuring: graph coarsening by conden-
sation. This transformation is obtained by identification of all vertices in each
subgraph induced by a partition class to one vertex.

DEFINITION 54.8 Let G = (V,E, f,g) be a graph. Let Py(G) =
{Vi,..., Vi with V; €V (i = 1,...,m) be a partition of the vertex set
V oof G.

The graph Geona =pef. Pvi(va(. .. (@vm(G))...)) is the graph condensa-
tion of G with respect to the vertex set partition Py (G).

The transformation ¢ oni(G) =pef. Geond is called graph coarsening by con-
densation. O

REMARK 5.4.9 In general on the one hand information on relations be-
tween elements which are members of the same partition class is lost. On the
other hand information on partition classes is obtained. O

ExXAMPLE 5.4.4 In Figure 5.16 graph coarsenings ¢ py (G) and ¢ eonqe(G) of
the graph G are shown. O

EXERCISE 5.4.4 For the graph G shown in Figure 5.18 and the partition
Py (G) of the vertex set of G give
a) py(G)
b) spcond(G)' O
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G = (V,E f,9, W,W,)

with:

VvV = {1,2,3,4,5,6,7},

E = {(1,4).(2,1),(2,3),(2,4),(2,5).(2,6).(2,7).(3,1),(3,5),
(4,7),(5.6),6.4)},

f(1) = f(4) = f(7) = {pupil, 8 years old},

f(3) = f(5) = f(6) = {pupil, 12 years old},

f(2) = {teacher},

9((2,1)) = 9((2,3)) = g9((2.4) = 9((2,3)) = 9((2,6)) =
9((2,7) = 9(B,1)) = g((5.1)) = 9((5:4)) = 9((5.7) =
9((6,4)) = {helps} = {=—=}

9((1,4)) = 9((8,5) = g9((4.7) = 9((5.6)) = {smaller} =

. = {—>}
W, = {pupil, teacher, 8 years old, 12 years old},

W_= {helps, smaller}.

R/(G) =
{{1,4,7},{2},{3,5,6}}

\/

Gy

L=y

Figure 5.16. Example for graphs coarsenings by vertex set partition and by con-
densation.

The transformations ¢.,,q and @py give a basis to formalize the formation
of hierarchical structures.

We can describe each level of a hierarchical structure by means of a reduced
graph, for instance an upper level by a graph condensation (cf. Definition 5.4.8),
a lower level by another graph coarsening based on a partition of the vertex
set (cf. Definition 5.4.6). A possible transformation to connect these levels is
the join formation.

DEFINITION 5.4.9 Let G = (V, E, f,g) and G' = (V', E’, ', ¢’) be graphs
with VN V' = 0. Let {w*} be an edge label. We define the graph G, =pef.
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O

O=@=-0 @ -E=©

— & G hier
Figure 5.17. Example for a hierarchical structure Gpe;.

(V* E*, f*,g*) with

Ve o= VUV,
E* = EUFE U{(v,v)|ve Vv eV},
. flu), if ueV
F(u) { f'w), if ueV’
gle), if eec E
g*e) = Jg'(e), if e€ £

{w*}, otherwise.
Gljoin is called graph join of G’ and G’ with respect to the label w*. The
transformation @i, (G, G', w*) =per. Gioin is called graph transformation by
join formation. O

EXAMPLE 5.4.5 In Figure 5.19 the join Gjun = ©join(G1, G2, w*) of the
graphs GG; and Gy is shown. O

EXERCISE 5.4.5 Give the join @y (G G2, w*) of the graphs G and Gy in
Figure 5.20. O

W} W}

PV(G) ={{1,2,3}, {4.5}, {6,7,8,9}}

Figure 5.18. Graph G for Exercise 5.4.4.
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G 1 G 2
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\/

G

join
— {W*}
Figure 5.19. Example for a graph join.

For example a hierarchical structure of two levels can be generated on the
basis of the joins between the induced subgraphs of order one of the upper
level with the related induced subgraphs of the lower level. In this case the
complete hierarchical structure can be obtained by the union of these joins with
the graph representing the upper level. This can be extended to the formation

of hierarchical structures with more than two levels by successive applications
of these operations.

EXAMPLE 5.4.6 In Figure 5.17 a hierarchical structure Gy, based on G'py

W} W} W} {W,}

——2 @ (5

N

{w,} {W;} W}

G, G,

Figure 5.20. Graphs G; and G4 for Exercise 5.4.5.
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and G ynq of Figure 5.16 is shown. O

To give a contribution for an adequate formal description of cognitive struc-
ture transformations as well as for modeling and simulation of task-dependent
cognitive processes, systematic formal and experimental investigations for con-
crete problems are necessary.

5.4.6 Application to psychological problems

The application of the approach consists in model-theoretical analyses of dif-
ferent problems connected with comparisons of theoretical and experimental
results.

We have applied the approach to different fields in cognitive psychology. An
overview about formal descriptions of different cognitive structure transforma-
tions on the basis of graph transformations is given in Sommerfeld (1991).

A suitable paradigm to analyze processes of cognitive structuring in for-
mation and transformation of mental representations are ordering problems.
It is well known that orderings of sets of elements are of importance in many
domains of knowledge processing (Bower, 1971; Trabasso & Riley, 1975; Moyer
& Bayer, 1976; Crowder, 1976; Banks, 1977; Groner, 1978; Pliske & Smith,
1979; Krause, 1982; Anderson, 1983; Wagener & Wender, 1985; Krause et al.,
1986; Pohl, 1990).

The process of solving an ordering problem is characterized by typical
cognitive structure transformations such as restructuring processes as well as
deleting and adding processes within the cognitive structure that represents a
certain piece of ordering information.

In relation to the definition of an one-relational ordering problem (Groner,
1978; Krause et al., 1986) a general (more-relational) ordering problem is de-
termined by a given set V' of elements, a set R of ordering relations on V', a
given set G, of representations of propositions which give information about
relationships between elements and relations, and a set () of questions which
have to be answered, i.e. a set of pairs of elements for which the question has
to be answered whether the considered two elements are in a specified rela-
tion r € R or not. The information inferred on the basis of G4, which gives
the possibility of a correct answer on all these questions is a solution of the
considered ordering problem.

DEFINITION 5.4.10 Let V' = {vy,...,v,} be a nonempty set and let R =
{r1,...,ry} be a set of ordering (i.e. transitive, irreflexive, asymmetric) rela-
tions on V. Let G,, = {G1,...,Gy} be a set of graphs such that for any
i€{l,...,n}and any r € R holds G; = (V;, £, fi,9:), Vi C V., fi(v) = {v} for
any v € V;, gi(e) € P(R) for any e € E;, and if (u,v) € E; with {r} C ¢;((u,v)),
then (u,v) € r (i.e. u is in relation r to v).

Let Jig = {({z}, {y}, R)|z,y € V, R* € P(R)} and
Jir ={{z},{y}, {r})|z,y € V,r € R} be sets of possible interpretations, and
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let QQ = Qr U Qr UQy such that for any » € R

Qr C Jig and if ({z},{y}, {r}) € Qr, then (z,y) €,

Qr C Jig and if ({z},{y},{r}) € QF, then (y,x) € r,

Qu C Jig and if ({z},{y},{r}) € Qu, then (z,y) ¢ r and (y,z) & r.
The tuple (V, R, Gyiv, J1r, Qr, Qr, Qu) is called an ordering problem.

A set S C Jig is a solution of the ordering problem (V, R, Gy, J1r, Qr,
Qr,Qu) iff for any ({z},{y},{r}) € S bholds ({y},{z},{r}) ¢ S and for
any x € V and any r € R we have ({z},{z},{r}) ¢ S and @ C S, and if
(=} Ay} {r}) € Qp then ({y},{z},{r}) € 5, and for any ({z},{y}.{r}) €

Qu we have ({z},{y} {r}) ¢ S and ({y},{z},{r}) ¢ S.
An ordering problem (V. R, Gy, J1r, Qr, QF, Qu) is called solvable iff there

exists a solution S of (V, R, G, J1r, @1, QF, Qu). A solution S is represented
by a graph Gs = (Vs, Eg, fs, gs) (describing a cognitive structure) on the basis
of an interpretation system of the type Into, = (Jiz, C, s, t) iff

S ={{z},{y},{r})| exists ({z},{y}, R*) € I(Gs, Into,) with r € R*}.

An ordering problem (V. R, Gy, Jir, Qr, Qr, Qu) with R = {ry,...,r,} is
called a g-relational ordering problem.

An ordering relation r is called linear iff for any x,y € V with x # y we have
(x,y) € r or (y,x) € r. The ordering problem (V, R, Gy, Jir, Qr, Qr, Qu) is
called linear iff all relations r € R are linear orderings.

The ordering problem (V, R, Gy, Jir, @1, Qr, Qu) is called complete iff
for any » € R and any x,y € V with « # y holds ({z},{y},{r}) € Q or

{y} A=} {rh) e @ O

REMARK 5.4.10 We have a set of given structural information units, e. g. ob-
jects, events or patterns that are in a certain ordering relation r. Based on
relational connections between different information units the set of structural
information units can be brought into a linear order and classified as a basis
for a hierarchically ordered structure.

The general task in solving an ordering problem is to comprehend and to
remember given information about ordering relations between elements and in
consequence to answer questions on given and inferable information (Bower,
1971; Banks, 1977; Pliske & Smith, 1979; Krause, 1982; Pohl, 1990).

The given information consisted of a set of structural information units of
the type “element - ordering relation - element (v;rvg)”, ordered by chance and
presented to the subjects successively at a monitor. In general only informa-
tion about immediately neighboring elements is given. The subjects have to
answer questions v;rv,,?7 on neighboring elements as well as on non-neighboring
elements.

That means the task in solving an ordering problem is to determine a
definite set S C V x V x R of propositions inferable from Gg,, with the
property that S is consistent (i.e. S represents the ordering relations under
consideration), and that for any question ({z},{y}, {r}) € Qr (‘ in relation r
toy?’) there exists an answer ({z}, {y}, {r}) € S (‘z inrelation r to y!") and for

any question ({z}, {y},{r}) € Qr there exists an answer ({y},{z},{r}) € S
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(‘y in relation r to z!’, i.e. ‘z not in relation r to y!” because r is an ordering
relation and thus it is asymmetric) and for any question ({z},{y},{r}) € Qu
there exists no answer in S.

That means the subjects must be able to answer all these questions cor-
rectly. O

Here we want to demonstrate the application of our approach by means
of an example of a linear one-relational ordering problem (cf. Pliske & Smith,
1979).

EXAMPLE 5.4.7 We have the set of the following given propositions:
Prop. 1: Maria is more intelligent than Eve.

Prop. i:  Anne is more intelligent than Paul.

Prop. n: Bert is more intelligent than Benny.

In this ordering problem subjects have be able to answer all questions about
the relation ‘is more intelligent than’ between persons under consideration.

Thus we have V' = {Maria, Eve, ..., Anne, Paul,..., Bert, Benny},

R = {r} with r = ‘is more intelligent than’. We describe proposition 1 by the
following graph:

G1 = (W, Eq, fi, 1) with Vi = {ug,v1}, By = {(u1,v1)}, fi(u) = {Maria},
fi(vy) = {Eve}, and ¢1((u1,v1)) = {is more intelligent than}. The other
propositions can be represented in an analogous way, such that we have the
set Gyiv = {G1,...,G,} of representing graphs.

Furthermore we have Q = {({z},{y},{r})|z,y € V,z # y}, Qu is empty
and ) and Qr are determined by the given ordering relation ‘is more intelli-
gent than’. The ordering problem (V, R, Gy, Jir, Qr, @F, Qu) is complete.

Now it is our task to formalize different cognitive structure transformations
for the solution of this ordering problem. At first we have to make a specifi-
cation of the interpretation system Into,. Obviously it is sufficient to use the
interpretation system Into,1 = (Jig, 0, s, te). Because the representing graph
G only contains the edge label {r} in this case the interpretation system Int o,
is equivalent to the interpretation system Intgy = (Je, C, se, tyyy) with C' = 0.

On the basis of this interpretation system and the transformations charac-
terized now we are able to analyze and formalize systematically different types
of cognitive transformations which can be realized by a subject to generate an
internal representation of external information about such an ordering prob-
lem. Subjects can apply different combinations of elementary transformations
(to the representation of external given information) which reduce, enlarge or
do not change the structural information content.

Obviously for this ordering problem there exists no solution S which does
not contain the structural information represented by Gg,. Thus it follows
that a solution cannot be obtained by a transformation reducing the structural
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information content of G,;,,. Also Gy, represents no solution of the considered
ordering problem, i. e. a solution S cannot be obtained only by transformations
without change of structural information content.

To solve the ordering problem transitive inference processes are necessary.
That means transformations which results in an enlargement of structural in-
formation content must be carried out.

Here we consider only transformations which give the possibility to solve
the ordering problem. Thus it is sufficient to investigate a special class of
combinations of elementary transformations with enlargement of structural
information content described above.

The inference of information which is necessary for the solution (based on
Ggiv and the transitive property of the relation r) can be described by means
of the process of transitive supplement formation of G = Gy U ... UG, that
means by ¢;(G) = G;. In this way for example we can obtain the proposition
‘Anne is more intelligent than Benny’.

The united given and inferred information is described by means of the
transitive hull p(G) = GU G, = Gg = (V, Eg, fs, gs) which represents a
solution S of the considered ordering problem on the basis of the interpretation
system Into,.

In the given ordering problem all girls are more intelligent than the boys.
That means it is possible to use information about these classes and to solve
this ordering problem on the basis of a hierarchical structure. It is easier to
answer the questions on the basis of a hierarchical structure based on this
classification of the set of persons than only on the given set of structural
information units.

For this purpose we start with the graph Gg and the partition Py (Gg) =
{V1,V2} of the vertex set V where V; is the set of all boys and V5 is the set
of all girls. Using these partition classes ‘boys’ and ‘girls’ at first we apply
to G the transformation of graph coarsening by condensation and obtain
©Veond(Gs) = pv, (11 (Gs)). This structure is used as the upper level in a two
level hierarchical structure.

The structure of the lower level can be obtained by application of graph
coarsening by vertex set partition on the basis of the same partition classes,
i.e. we have ppy(Gg) = Gs( V1) UGg( Va).

The complete hierarchical structure is generated on the basis of the joins

(pjoin(gocond(GS< ‘/1 >a SOP‘/(GS( ‘/1 >)7 {G}) = Gjoinl and
Pjoin(Peond(Gs(V2)), orv(Gs(V2)),{€}) = Gjoinz
between the induced subgraphs @ .nq(Gs( V1)) and @ena(Gs(V2)) of order
one of the upper level with the related induced subgraphs ¢py(Gs( V1)) and
wpy(Gs({Va)) of the lower level, and by the union of these joins with the graph
Yeond(Gs) = v, (v, (Gs)) representing the upper level. By these transforma-
tions we get the graph Gg» = @eona(Gs) U Gjoint U Gjoina-
The graph Gg« does not represent a solution of the ordering problem
(V. R, Gyiv, Jir, Qr, Qr, Qu) on the basis of the interpretation system Into,1,
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i.e. the hierarchical organized information contained in Gg« cannot be ex-
tracted by means of this interpretation system, but it is easy to choose another
interpretation system which can use this hierarchical structured information.

For this purpose we have to make another specification of the interpretation
system Into.. We use the interpretation system Into.o = (Jig, 0, sp,tn) with
sp(G*) = {(u,v)\u,v € V* exists x,y € V* with (u,x) € E*, (v,y) € E*,
g (@) = g*((v,9)) = {€}, (x,9) € E*, g*((z,9)) = {r}}U{(w, v)[u,v € V*,
(u,v) € E*, g*((u,0)) = {r}} and t,((u,v)) = (f*(u), f*(v),{r}) for any graph
G* = (V*, E*, f*,¢*) and for any (u,v) € s,(G*).

On the basis of this interpretation system Int .o using hierarchical struc-
tured information Gg- represents a solution of the given ordering problem

(‘/7 R7 ggiU7J1R7QT7QF7QU>‘ O

REMARK 5.4.11 By means of this example we have shown how the solution
of an ordering problem can be formalized on the basis of graph transformations.
Experimental results have shown that such a formalization is adequate for
cognitive processes in solving certain classes of problems. This is a basis for
modeling of task-dependent cognitive processes. a

EXERCISE 5.4.6 There is a short story. A little hare was walking through
the forest. He lost his way and asked several animals for information. This
information was more or less helpful for him. The following propositions give
the relationships between the answers of different animals.

The fox was more helpful than the cat.

The goose was more helpful than the craw.
The rat was more helpful than the mouse.
The sparrow was more helpful than the bee.
The mouse was more helpful than the stork.
The cat was more helpful than the rat.

The elephant was more helpful than the horse.
The craw was more helpful than the sparrow.
The stork was more helpful than the goose.
The bee was more helpful than the fly.

The horse was more helpful than the fox.

The following problem is to solve:

All questions about the relation ‘was more helpful than’ between the animals
under consideration have to be answered.

1. Give two different graphs and corresponding interpretation systems such
that each of these graphs represent a solution of the ordering problem de-
scribed above.

2. Which cognitive structure transformations give the possibility to solve this
ordering problem? Give their formal description on the basis of graph trans-
formations characterized in this paper. O
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The experimental evidence of a representative subset of the systematized
cognitive structure transformations, i.e. for different types of integrative, hi-
erarchical and selective cognitive structurings, could be produced on several
experiments of solving linear ordering problems. Thereby cognitive structur-
ings of subjects were be determined on the basis of the reaction time using
the symbol distance effect (Krause et al., 1986). To generalize our approach
beside linear ordering problems we also investigated partial ordering problems
(Sommerfeld, 1991).

In the experiments it could be shown that relevant transformations are
covered by the systematization of our approach and that these transformations
can be described adequately by certain graph transformations.

Another field of application of this approach has been text comprehension
and text processing. We formalized operations which have been investigated
in Kintsch and van Dijk (1978) and Beyer (1985). For an overview about
formalization of operations for the generation of hierarchies of propositions
and the formation of macropropositions we refer to Sommerfeld (1991).

Systematization and formalization of cognitive structure transformations
give a basis for a systematization and specification of hypotheses for the so-
lution of a concrete problem under consideration. But beside the aspects of
completeness and an adequate formal description of cognitive structure trans-
formations there is the question for parameters controlling these processes,
and based on this there is the question for evaluating cognitive processes with
respect to their efficiency in formation and transformation of internal repre-
sentations.

Based on this approach strategies can be classified and evaluated by means
of pieces of structural information (relevant for solving the problem under
consideration) which is used by a (theoretical or real) subject in processes
of formation of internal representations. Differences between theoretical and
experimental data have been determined (Sommerfeld, 1991).

5.5 Summary

The investigations are based on a central problem of cognitive psychology, to
identify cognitive structures and operations on cognitive structures which are
fundamental components in formation and transformation of internal repre-
sentations. From this point of view one of the main problems in mathematical
psychology is to provide an adequate description of internal representations
and operations on these representations.

We consider the structural aspect of given and represented information.
For the formalization of structures and structure transformations we use graph
theory because it is very useful for describing structures, relations between
structures and operations on structures.

The concept of information represented by means of a certain structure
has been specified. The structural information which can be extracted from
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a given structure depends on the representation of this structure and on the
kind of its interpretation. Therefore we introduce the concept “interpretation
system” and the concept “structural information content”. By means of these
concepts we are able to investigate the relationships between transformations of
representing structures and the change of their structural information content.

Based on the formalization of a structure representing a structural infor-
mation a formal approach for an interpretation system has been developed.
On the basis of this formal approach it is possible to analyze the part of an
external given piece of information which is internal represented by a subject.
Thereby it is possible to describe whether more or less context is taken into ac-
count and whether certain structural properties are emphasized or suppressed.
Furthermore the relation between the structural information content of the
internal represented information and the structural information content of the
external given information can be investigated more formally.

Thus we have given prerequisites for the formal description of qualitative
and quantitative differences between external given and internal represented
information. Theoretical and experimental investigations are carried out on
the formalization of cognitive structure transformations on the basis of graph
transformations. This approach of formalization of cognitive structure trans-
formations is a basis for an adequate formal description and evaluation of
processes of formation and transformation of cognitive structures.
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6.1 Introduction

As models for procedural knowledge or knowledge of what to do, Production
Systems have gained some importance in both artificial intelligence and the
behavioral sciences. A major advantage of these systems is their ability to
offer a modular representation of procedural knowledge: each rule occurring in
a Production System model can be used to represent a meaningful unit of (po-
tential) behavior. The set of rules making up the system can be conceived as a
representation of the system’s behavior potential. To use Production Systems
as models of actual behavior, however, requires some kind of process-control in
order to put rules into a right sequence of applications constituting the behav-
ior of the system. In this article, we will introduce a particular representation
of process control in the form of a programmed control structure. This control
structure governs the successive application of the rules in a Production Sys-
tem. The set of rules together with a programmed control structure will be
called a Programmed Production System, abbreviated as PPS.

Since Production Systems may be viewed as models capable of generating
and explaining behavior, we can rephrase the central problem in the behavioral
sciences

how can we induce the structure of a system from the behavior it
shows?

in this context as:

given the behavior of a Production System, how can we infer its set
of rules and control structure?

We do not pretend to attack this problem in its full generality®. instead, we will
focus on a part of this problem, namely the inference of the control structure,
or process-control knowledge, given the set of rules or procedural knowledge, the
system uses. This problem will be called the control identification problem.
To give the reader some necessary intuitions about the problems we will
deal with, a short introduction into Production Systems will be given and we

'From a computational point of view there are convincing arguments for declaring this
problem to be unsolvable if we insist on identification in finite time.
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discuss the roles and representation of procedural and process-control knowl-
edge within this formalism. The control identification problem will be stated
informally.

In Section 6.3 we discuss some necessary concepts and notations of formal
language theory.

In Section 6.4, we introduce the concept of a Programmed Production Sys-
tem and we show how a relation between the control structure of a PPS and
its behavior can be specified. Here, we distinguish between the internal be-
havior of the system, describing it in terms of the control structure used and
the external behavior, describing the observable aspects of the behavior. We
conceive the internal behavior as giving an explanation of the external behavior
of the system. As the reader might expect, in general one-to-one correspon-
dence between the internal and external behavior of a system does not exist
in the sense that, in general, the same external behavior may be explained by
different internal behaviors.

Therefore, in Section 6.5, we concentrate on the class of systems capable
of explaining a given external behavior and we discuss the problem of finding
a most simple or minimal control structure explaining the external behavior
of a given PPS. We show here that this problem can be solved in an efficient
way. This so-called reconstruction result underlies the solution to the control
identification problem to be discussed in Section 6.6.

In Section 6.6, we show that a method of identifying a minimal PPS gen-
erating the external behavior exists, a finite sample of which we can observe,
thus solving the control-identification problem for Programmed Production
Systems.

Finally, in Section 6.7, we will discuss some further results obtained. We
give some possibilities for future research and some suggestions for further
reading.

6.2 Production Systems

We do not plan to give a complete treatment of Production Systems here. On
the contrary, we assume the reader to have sufficient knowledge of the use of
Production Systems in cognitive psychology, cognitive science or artificial in-
telligence to be prepared for a more rigorous treatment of Production Systems.
This part is only meant to present the necessary details of the formalism we
need in the subsequent parts.

Readers, however, who want to see more details about applications of Pro-
duction Systems, should consult the suggested references to the Production
Systems literature collected at the end of this chapter.

6.2.1 A general description of Production Systems

A Production System, abbreviated by PS, consists of the following parts:
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1. A finite set R of condition-action rules, also called productions, specifying
what to do (actions) under the circumstances (conditions) specified. Such
a rule will be conceived as describing a fragment of potential behavior or
procedural knowledge of the system. A shorthand notation for a rule is:
( condition ) — ( action ).

2. A specification of the environment or domain of application in which the
rules of the system operate. Such an environment can be described as a
collection of states. Each such a state describes the current environment
of the system by specifying the set of conditions (facts) that are said
to hold at that time. In the Production Systems literature, we speak
about the environment as a database D. Slightly abusing language, this
database then can be identified with the set of states it can be in, so we
conceive D as a collection of states d. We distinguish a subset Dy C D
as the set of initial states of D.

3. An interpreter or inference engine inspecting the current state of D and
the set of rules R to see which rules can be applied to change the cur-
rent state into a new state of D. In the execution of the interpreter we
distinguish the following subprocesses:

e matching the contents of the condition part of a rule against the
contents of the current state d.

e selection of a rule from a set of rules that could be matched suc-
cessfully. This process is also called conflict-resolution.

e cxecution of the action part of a rule selected. The execution mod-
ifies d, thereby creating a new state d’ € D.

Together these subprocesses constitute the so-called recognize-act cycle
of a PS.

ExaMPLE 6.2.1 Consider the following set of general rules:

e 71 : loves(z,y) AND not(loves(y,x)) — not(happy(z))
e 12 : loves(z,y) AND loves(y,xz) — happy(z) AND happy(y)
e 3 : not(happy(z)) — drinking(x)

These rules should be interpreted as a kind of inference rules in folk psychology
permitting one to derive conclusions given a certain state of affairs. Assume
the current state of the database D, conceived as a set of states, is:

dy = {loves(john , mary), not(loves(mary , john))}

In the first recognize-act cycle, r1 matches with the contents of dg, finding the
substitution {z = john,y = mary}; note that 72 and r3 cannot be matched.
Conflict resolution is trivial since only 71 can be selected and executed. Exe-
cution of this rules changes the current state and results in the state:

d; = dy U {not(happy(john))}

The next cycle offers an opportunity for 1 and r3, since both match a part of
the current contents of the database. Firing r1 does not change the contents
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of the database. Firing r3, however, results in the state
dy = d; U {drinking(john)} 0

The description of a PS operating on a database as sketched above is fairly
typical for the classical view of Production Systems. In this view, conflict-
resolution is an almost fixed subtask of the interpreter, structured in a way
that is independent from the knowledge domain at hand.

It can be argued, however, (Witteveen, 1984) that a separate representation
of process control allows for a clearer view of the two components of a PS, one
component specifying what may be done, the other specifying what s being
done. Such a distinction seems to be necessary if we want to deal with, for
example, the modeling of skill-acquisition. Here we can assume that basic skills
can be modeled by individual production rules. By means of instruction and
practice, control knowledge has to be acquired to schedule to execution of the
basic skills. At the same time, such a separation offers the possibility to study
differential effects of control knowledge on the performance of complex skill
behavior based on the same set of basic skills.

Therefore, instead of harnessing the interpreter with a fixed control-resolution
scheme, we will use an explicitly and separately represented notion of process-
control knowledge in the form of a separate control structure.

Summarizing, in a PS we distinguish three types of knowledge representa-
tions:

e procedural knowledge, knowledge that can be executed, stored in the rule
base of the system,

e declarative knowledge stored in the database as a description of the en-
vironment of the system and

e process-control knowledge, bearing upon the appropriate selection of pro-
cedural knowledge to process a (complex) task (Georgeff, 1983; Boyle,
1985), represented in the form of a control structure.

We propose a view of Production Systems in which the set of rules specifies
what may be done in a task environment, delimiting the behavioral potential
of the system, while the control structure is used to model what will be done,
by selecting the rules in such a way that the right sequence of rule applications
is obtained.

6.2.2 A preview of the control identification problem

Until now, a PS has been conceived as a formal object, describing declarative,
procedural and process-control knowledge. To give a more dynamic character-
ization of a PS, we will make a distinction between the (external) behavior of
a PS and its internal structure.

We want to use a PS as a model of a subject performing some task. There-
fore, we will speak about the set of initial states of D as defining the task
environment: each initial state dy € Dy can be described as a set of facts
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specifying some task to be performed. For example, modeling the behavior
of students solving simple arithmetic problems means that we should specify
a set of initial states, each initial state giving a description of the arithmetic
problem to be solved. The set of initial states then specifies which tasks will
be given to the student.

Describing the external behavior of a PS means that we take a look at
the system from an outside point of view. This implies that processes such
as the scheduling of rules are unobservable and we are only able to observe
some changes in the states of D caused by the execution of production rules.
To keep the discussion simple, we will assume that we can identify each state-
change with the execution of a particular rule in a unique way. Therefore, given
an initial state dy of some Programmed Production System (PPS) M using a
control structure C', we can associate with this initial state a sequence of rules
executed starting with dy. The set of all these sequences for every initial state
of D defines the set of execution traces of a PS for the task environment at
hand.

Such a set of traces can be conceived as a description of the behavior of
the system as it could be observed from the outside. Now assume that we are
able only to observe a finite part of this (in principle) infinite set of traces and
assume that we know the set of rules used to perform the tasks, for example
as the result of a detailed protocol analysis. Then we may ask which control
structure could be responsible for the external behavior a part of which we
observed. This problem we call the control identification problem.

EXAMPLE 6.2.2 To show the relevance of the problem in another way,
suppose an expert system has to be built. Suppose furthermore that a set of
production rules has been chosen to encode relevant pieces of expert knowledge.
After these rules have been constructed, the problem arises how to schedule
their application in order to solve the tasks the system is meant for. One
possibility would be to observe the behavior of an expert, identifying the rules
executed and trying to find a suitable control structure generating the same
execution sequences. O

To solve the control identification problem, first we have to agree upon what
will count as a solution to such a problem. As we will see in the next section,
given a description of the external behavior, there might be several control
structures that can be used to explain such a set of traces. Intuitively, we
would prefer a most simple explanation, i.e. a most simple control structure,
for the set of traces observed. Therefore, we will define what a most simple
control structure will look like and we will discuss an efficient method to find
such a control structure.

To say it more precisely, now the control identification problem can be
stated as follows:

Given a (finite) set of traces of a PS whose control structure is
unknown and given a class of control structures, choose a (most
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efficient) control structure generating a set of traces from which the
given set was a sample.

In this article we will try to solve the control identification problem for the
class of programmed control structures®. To attack the control identification
problem, we will have to formalize rigorously the intuitive notions presented
in this section. Having grasped the essentially simple ideas, the reader should
have no difficulties in understanding what follows.

6.3 Preliminaries and notations

In this section we will present a working vocabulary in order to deal with
Production Systems and the control identification problem. This vocabulary
originates from formal language theory. Formal language theory is a part
of theoretical computer science investigating the relations between languages
as sets of symbol sequences and abstract formalisms such as grammars and
automata characterizing such languages. In this part we will only deal with
the way in which formal languages are represented.

Our starting point is a particular set, called the alphabet. An alphabet is a
finite non-empty set of symbols and will be denoted by >. Familiar alphabets
are {a,b,c,...x,y,z} and {0,1,2,3,4,5,6,7,8,9}. A word over an alphabet X
is a finite, possibly empty, sequence of symbols taken from . For example,
if ¥ = {a,b,c} then v = abab, w = bcab and r = aaa are words over X.
In particular, the empty word, denoted by A, is a word (consisting of zero
symbols taken from Y) over ¥. In the sequel we will use sequence and word
indifferently. Words (sequences) can be concatenated to build a new word
(sequence). Concatenation means gluing the two words. For words o and f3
the concatenation is written as . The length [(w) of a word w over 3 is the
total number of occurrences of symbols in w. So, if w = babab, [(w) = 5. For
any natural number k > 0, ¥ denotes the set of sequences over ¥ of length k.
So we have ¥ = {\} and ! = . The set of all words over ¥, denoted by ¥*,
is defined as

»=x'ux'ux’u...= "
k>0
For example, if ¥ = {a}, the set X* equals {a" | n > 0}, where a” is a
shorthand for a sequence of n a’s. A formal language L over X is just a
subset of the set ¥*. For example, L; = {a, b, ab,ba} is a (finite) language and
L ={b™a" | n+m > 1} is an (infinite) language over ¥ = {a,b}. We will
need the following relations between words o and 3 over an alphabet X:

e « is a subword of (3 if there exist (possibly empty) words 1, B2 € X such
that 8 = fiaf,. If By = A we say that « is a prefiz of (.

2The general control identification problem has been discussed in Witteveen (1987) for
arbitrary classes of control structures.
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e « is a scattered subword of (3, denoted by a =< [, if there exist words
aq,Qo,...ap € X and By, fo, . .. Br, Bre1 € 2° such that

B = Bronfacs . .. Brow P
and
a = 10y . ..0L

If a < 3, then we will also say that ( is an extension of . Note that if
« is a subword of 3 then also a =< 3 holds.

With respect to prefixes, the following concepts and notations will be used
frequently:

e The set of all (non-empty) prefixes of a word « will be denoted by Pref(a).

e A set S of sequences over an alphabet 3 is said to be prefiz-free iff for
every word s € S, no prefix s’ of s, such that s’ # s, occurs in S, or
equivalently, for every s € S, Pref(s) NS = {s}.

e A set S of sequences over an alphabet ¥ is said to be prefiz-closed if
every non-empty prefix of every sequence s € S is contained in S, or
equivalently, S = U,cg Pref(s).

ExXAMPLE 6.3.1 Let ¥ = {a,b,c}. Let
a = abab
and

0B = acacbbcaba

Then aba is a subword of «, & < 3 and Pref(a) = {a, ab, aba, abab}. The set
S ={a, b, ab, ba, abb} is prefix-closed. The set S" = {bab, abb, ca} is a prefix-free
set. O

A sequence « is repetition-free if every non-empty subword of a: occurs at most
once in «, i.e. if & = 1 B, for some non-empty word J then [ is neither a
subword of 7 nor a subword of ,.

If o =apis aword with a € ¥ and § € ¥* then the tail of o, denoted
tl(«), is equal to 5. Let S be a finite set of non-empty words (sequences).
Then S is said to be tail-consistent if for all s1,s5 € S, if ti(s1) = B1 a By and
tl(s2) = 71 a7y for some non-empty word «, then either (3, is a prefix of 5 or
v is a prefix of J5. In other words, tail-consistency means that whenever the
tails of two sequences have a symbol in common, and this symbol is not the
last symbol in these sequences, then the symbol occurring thereafter they also
have in common. For example, the set

S = {abcdefg, xyde, egh, xbcd}

is tail-consistent.

REMARK 6.3.1 Often sequences are identified with functions. Let {n} de-
note the set of natural numbers less than or equal to n, and ¥ an alphabet.
Then a word « over ¥ can be identified with a function o’ : {n} — X, where
a/(i) is the i—th symbol of o and n is the length of a. O
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EXERCISE 6.3.1 Redefine the notions prefix, subword, scattered subword
and tail-consistency using the function-representation of sequences. O

6.4 Programmed Production Systems

To capture a notion of process-control knowledge in a PS we introduce a par-
ticular type of control structure, derived from the concept of a programmed
grammar (Salomaa, 1973). We call such a system M a Programmed Production
System, abbreviated as PPS. We give the main elements of this formalism.

The rules that make up M are ordinary production rules. They are collected
in a set R. We are not interested in the contents of particular rules, so we will
assume that there exists some alphabet Yz of symbols or labels of rules, such
that every rule has a label in Xg. Formally, we express this assumption by
assuming a surjective labeling function Lab : ¥zp — R. In the sequel we will
normally assume this labeling function also to be injective. Hence, we will
often identify the rules r; in the set R = {ry,r,...r,} with their labels.

The database or task environment of the system will be denoted by a de-
numerable set D of database states d;. A special subset Dy of D marks the set
of initial states. These states can be thought as describing the set of tasks or
problems the system has to solve. We assume the set D to be closed under all
applications of the rules in R.

The programmed control structure of a PPS is a tuple C' = (0, ¢) where

e 0 : Y — X is a partial mapping associating with each label j of a rule
chosen the label o(j) of the rule to be chosen next if j can be executed
in the current state of the database. This mapping is called the success
function.

e the partial mapping ¢ : ¥ — 3 associates with each label j of a rule
chosen the label ¢(7) of the rule to be chosen next if 7 cannot be executed
in the current state of the database. We call this mapping the failure
function.

A PPS M then is a tuple
M = (¥gr,R, D, Dy, C)

where usually Yz will be omitted.

To describe the dynamics of a PPS M, let dy be an initial state of D.
M is said to compute new states in D by applying a sequence of rules to d.
To start such a computation we assume a special label in in ¥ referring to a
hypothetical starting rule, not really occurring in R. This rule n is used to
determine the first rule to select by M for every initial state of D. It is assumed
that in is executable in every state of D and does not change any state of D.
So o(in) selects the first rule to try for dy. Hereafter, M continues by applying
the rule 7 selected to the current state d of D. If ¢« matches the current state,
M executes i, updates the current state by computing the resulting state d’
and chooses o(i) as the next rule to apply. If i does not match d, M leaves
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the current state unchanged and chooses ¢(i) as the next rule to apply. Such a
process will stop if, having selected a rule ¢, M notices that i can be executed
but o(7) is undefined or i cannot be executed and ¢(7) is undefined. Without
loss of generality, we can assume that M halts only if a unique label out € ¥
is selected. Analogously to in, out is the label of a hypothetical rule used to
signal a halting state for M. It is assumed that out is executable in every state
of D and does not occur in the domain of ¢ or ¢.

EXAMPLE 6.4.1 The following PPS M (see Table 6.1) is a system to model

Table 6.1. A Production System for simple arithmetic

label rule o 10)

m 1 -
1 (X)X 12
2 X XY o> ...product(X,Y)... 2 4
3 L X4Y)... — ...sum(XY)) 3 6
4 X +Y.o - Losum(X,Y) .. 4 5
5 X — answer(X) out 3
6 — fail out

a student performing a simple arithmetical task (after Sleeman & Smith, 1981):
Here, X and Y denote arbitrary natural numbers,
product(X,Y) and sum(X,Y’) denote the results of the corresponding com-
putations. A pattern ... /N ... means that it matches NV in any context. An
initial state dy of D is an arithmetical expression, specifying an arithmetic
problem to solve.

Suppose dy = 4 x (2 + 4 x 5+ 6) is such an initial state of D. To see

Table 6.2. Sequence of computation states

—(AxX(214x516),in), s2=(Ax(2+4x516),1),
33—(4><(2—|—4><5—|—6),2) 4= (4% (2420+6),2),
= (4 % (2420 +6),4), s6= (4 x (22 + 6),4),

o = (4 (25).4) 55 = (4% (25),5).
sy = (4 % (28),3), s10 = (4 x (28),6),
s11 = (fail, out)

which computation M performs, we introduce the notion of a computation
state s being a pair consisting of a current state and a rule selected. So let
us start with the initial computation state sy = (dp, in). Since o(in) = 1 and
in can be executed, the next computation state is s; = (do,1). Now rule 1
cannot be executed in state dy, so M chooses ¢(1) = 2 and the next state is
so = (dp,2). Then it turns out that rule 2 can be applied successfully, so rule 2
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Figure 6.1. Control graph of M

is executed, changing the current state to d; = 4 x (24 20 + 6) and the next
computation state is s3 = (dj, 2), since o(2) = 2, implying that rule 2 is chosen
as long as it can be applied successfully to the current state of the database.
The whole sequence of computation states is given in Table 6.2. This example
shows that M is not able to compute the correct answer 112, since M does not
apply the rules in the correct sequence. This does not imply, however, that
M cannot solve any arithmetical task. For example, M can solve the problem
dyp = 4 x 5+ 6 correctly. a

Notice, that by introducing out the control functions ¢ and ¢ can be assumed
to be total functions from Xz U {in} to Xz U {out} by defining the value of
a control function to be out whenever it was undefined before and giving an
arbitrary value to ¢(in). To simplify notations, we will deal with the rules of
the system by identifying R with Xz U { in,out}.

REMARK 6.4.1 Sometimes it is useful to describe the control structure of
a PPS M by a labeled directed (multi-)graph, called the control graph G,
of M. Informally, the nodes of GG;; are the elements of > and there are two
sets of edges. The set E? contains the pairs (i, 7) such that j = o(i), while
E? contains the pairs (i,7) such that j = ¢(i). A pair (i,j) € E° will be
represented by an edge labeled o between i and j, a pair (i,5) € E® will be
represented by an edge labeled ¢ between ¢ and j. As an example, Figure 6.1
gives the control graph of the system M presented in Example 6.4.1. O

EXERCISE 6.4.1 Try to improve the control structure of the production
system given in Example 6.4.1 in such a way that it solves the problem correctly.
Can you prove that with your control structure every simple arithmetic
problem using only +, x and parentheses can be solved? O
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6.4.1 Behavior of a PPS

In Example 6.4.1, we introduced the notion of a computation state as a pair
s = (d,i), where d is a state of D and i is a (label of a) rule in R. We will
use this notion to define the behavior of M. We say that a computation state
s is nitial if s = (dp, in) for some initial state dy € Dy and s is called final if
s = (d, out) for some state d of D. We say that a state s’ = (d', j) is directly
computed from s = (d,i), denoted as s = ', iff exactly one of the following
conditions holds:

1. ¢ matches d, the result of executing i is state d’ and o (i) = j

2. i does not match d, d' = d and ¢(i) = j
Now we can define a computation of a PPS M as a sequence of computation
states

505152 ...5; = (sj);:()
such that
1. s is an initial computation state of M
2. forevery 1 <j <t 5.1 =5
3. either t is finite and s; is a final state or ¢ is infinite

EXAMPLE 6.4.2 Given the initial state dy =4 x (2+4 x 5+ 6) in Exam-
ple 6.4.1, M performs a finite computation where the last computation state
is (fail, out). O

The set of all possible finite initial segments of such computations (s;)5_, of
a PPS M will be called the behavior of M. It constitutes the set of all finite
sequences of computation states that can be obtained by starting M on an
initial state dy € D. Given such a finite initial segment of a computation
(8j)j=0, Where s; = (d;,i;), note that given the initial state do in so, every d;
can be computed by applying the sequence of rules iy 72 ...%;_; in succession
on dy. Hence it suffices to take the initial state dy and such a sequence of rules
to recover the computation sgs; ... s; completely. Therefore, we shall introduce
the set Apply(M) of all application sequences of M as follows.

DEFINITION 6.4.1 Let M be a PPS. The set of application sequences, de-
noted by Apply(M), is defined as the set of all pairs (dy, o), where

1. dj is an initial state of D,

2. a=1giy...1, and

3. (dj,1;)%_¢ is a finite initial segment of a computation of M. 0

Note that Apply(M) describes the behavior of M in terms of the sequence of
rules applied by success or failure, giving a complete description of the way in
which these rules have been selected. Therefore we consider Apply(M) to be
the description of the internal behavior of M. At the same time, associated
with a computation of M, there exists a sequence of changes of database states,
caused by rules that are executed. These changes are of interest to the outside
observer of the system: for, only the rules executed can affect the environment



202 Cees Witteveen

and are associated with observable actions of the system. Therefore we will
filter out all occurrences of rules not executed in an application sequence to
construct a description of the external behavior of M.

DEFINITION 6.4.2 Given a PPS M and Apply(M), the set of execution
traces of M, denoted by Tr(M), is defined as:

Tr(M)={(d,3) | (d,a)€ Apply(M) and 3 is obtained from
a by deleting every occurrence of a rule

not executed in o } O

REMARK 6.4.2 Note that both Apply(M) and T'r(M) are sets of sequences
which are prefiz-closed. O

Observing M from the outside, one expects M to execute a next rule as long
as the rule just executed is not equal to out. While we allow for infinite
computations (we just don’t know when the system will halt) we don’t allow the
system to enter a failing loop i.e. an infinite number of successive selections of
rules that fail to apply. Therefore we state the following technical assumption:

ASSUMPTION 6.4.1 For every rule i # out, if (d,3i) € Tr(M) then also
(d,Bij) € Tr(M) for some rule j. O

We feel this assumption to be justified in dealing with PPS’s as models for
(human) behavior.

EXERCISE 6.4.2 Prove that the assumption implies that any subsequence
of an application sequence consisting of rules that could not be executed, is
repetition-free. O

To analyze relations between M, Apply(M) and Tr(M), we define the n—th
extension ¢" of ¢ inductively by

¢'(j) =37 forall jE€X
67 (j) = { o(o™(j)) if ¢"(j) is defined and ¢"(j) # out

~ | undefined else
Note that a trace is a pair (d,3), where [ is a sequence of rules executed.
Given an infinite number of possible initial states, the set Tr(M) can contain
an infinite number of different sequences, thus providing an infinite description
of the external behavior. So, what did we gain? On the one hand, we have a
better description of the internal and observable behavior than is provided by
the control structure, since there may occur rules in C' that are never applied
or executed for any initial state in D. On the other hand, this description of
the observable behavior may be an infinite one. Of course, in specifying this
behavior we want to have a finite description of it. Therefore, we will develop a
finite code for the behavior of a PPS. We will start with defining the execution
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relation Exjs for a PPS M.

DEFINITION 6.4.3 Given Tr(M), the ezecution relation Exy over ¥ is
defined as

Exy = {(i,§) | 3a € $*[aij € Tr(M)] } 0

We will use Fxj(i) to denote the set {j|(i,j) € Exp}. The set Exy gives
us a finite description of an important part of the external behavior: for every
(i,7) € Exp, in at least one trace it has been observed that j was executed
immediately after i. Notice that since Tr(M) is prefix-closed, (i,j) € Exy,
iff there exists a sequence 3 in a trace such that 77 is a subsequence of 5. So
Ex(i) contains all rules that could be executed immediately after i. Since
every trace has been derived from an application sequence, the following propo-
sitions can be easily seen to hold:

PROPOSITION 6.4.1 Given Exy, Tr(M) and Apply(M), there exists a
unique function mwy : Exyy — X° such that for every trace

(d, ’i() il ig .. ’Lk) € TT‘(M)
the sequence
T (G0, 91)Tar (i1, 92) - - g (-1, k)

occurs in Apply(M). 0

PRrROOF. (Sketch) For every (i,7) € Exy, we define the sequence
iy ) = iigit .. im
where i, = ¢*(0(i)) for k = 0,1,2,...m and m is the smallest integer such
that 4,, = j. Now it is not difficult to see that for every trace (d, ), ij is
a subsequence of 3 iff there exists an application sequence (d,«) such that

(i, 7) is a subsequence of a. Defining 7y (7, j) in another way would either
violate the properties of o and ¢ or would violate Assumption 6.4.1. [ |

We will call my(7, j) the control sequence of (i, 7).

We have almost reached our goal to show that there exists a finite encoding
of the behavior of a PPS. Instead of the possibly infinite set Apply(M), we
will show that it suffices to use the finite set Fx); together with the finite
function 7y, to describe this behavior. To make this claim more precise and
more convincing, we show that instead of the complete function 7, we only
need the values of 7, for a subset of Ex;:

PROPOSITION 6.4.2 Let Exp (i) = {j1,J2,---,Jm}- Then there exists a
J € Exp (i) such that for all ji € Exp (i), mar(i, Jx) is a prefic of mp(i, 7). O

PROOF. By Proposition 6.4.1, for every jp € Fx);(i), there exists a least
nj, > 0such that j, = ¢ (0 (7)). Let j be the rule such that n; = max{n,, | ji €
Exy(i)}. Then for every ji , ¢"i(o(i)) = ¢™ ™ (ji). Hence, if 7y (7, ji) =
@;j,, this implies that 7y (¢, j) = ;. 0;, for some sequence (3;, € ¥*, proving
the proposition. [ |
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Remember that given a sequence «, Pref(a)) denotes the set of all prefixes of
a. The following proposition is an almost immediate consequence of Proposi-
tion 6.4.2:

PROPOSITION 6.4.3 Let Exp (i) = {j1,72,---,Jn}- Then the relation <;
over Exy(i) defined by

jk < ]m Zﬁ[ 77(%]1{) € P?‘ef(ﬂ'(l,]m))
15 a total ordering. O

EXERCISE 6.4.3 Prove Proposition 6.4.3. O

Remember that Ez), was introduced as a relation over . In general, the
domain of a (binary) relation R, dom(R), is the set of all elements occurring
as the first element of a pair in the relation, while the range of R, rng(R), is
the set of elements occurring as the second element of a pair in the relation.

DEFINITION 6.4.4 The control function of M, denoted by 7, is a map-
ping my @ dom(Exy) — ¥*, for every i € dom(Exy) defined by mp(i) =
mar(i, 7) where j is the unique maximal element of <;. The control path of i
is defined as the value (i) and the set of all control paths of M, denoted by
Cp(M), is defined as Cp(M) = {mp (i) | i € dom(Exy)}. O

We now claim that the tuple (R, D, Dy, Cp(M)) can be used as an alternative
description of the internal behavior of M. To prove this claim, we will show that
this description can be transformed in an effective way into the description of
a PPS M’ generating the same set of application sequences as M does. Notice
that M’ does not need to be ezactly equal to M, we only require M and M’
to be indistinguishable with respect to to their sets of application sequences?.
The first difficulty we will meet in such a reconstruction attempt is the fact
that Cp(M) is a set of sequences instead of a control structure. So we need
a method to transform a set of sequences into a description of the control

structure of a PPS. The following definition establishes the missing link:

DEFINITION 6.4.5 Let S C X* be a finite set of finite sequences. The
control structure Cs = (0g, ¢s) is said to be derived from S iff for all sequences
101172 .. .1, € S we have:

1. il = Os(ig)

2. ik+1 = ¢S(Zk) for k = 1,2,. Lo, — 1.
where og and ¢g are partial mappings from X to X. O

Obviously, not every set of sequences can be used to derive a control structure
for a PPS. It is not difficult to see that such a set S has to be tail-consistent
to meet the requirement that og and ¢g should be functions.

3Tt might be that some rules of M do not occur in any application sequence of M. Then
for those rules the control structure of M’ might differ from the control structure of M,
without affecting the internal behavior of M’.
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EXERCISE 6.4.4 Show that for every PPS M, the set Cp(M) is a tail-
consistent set. O

Now it can be shown that M and Mgy have the same internal behavior:

THEOREM 6.4.1 Let Cp(M) be the set of control paths of a PPS M =
(R, D, Dy, C). Let Mcpry = (R, D, Do, Copary), where Copary is the control
structure derived from Cp(M). Then Apply(M) = Apply(Mcpr)- O

We omit the proof because it is of theoretical interest only. The reader might
try to prove this result by a careful application of the preceding definitions. We
conclude this part by observing that Cp(M) gives us a (behavioral complete)
alternative for the control functions o and ¢ in the specification of a PPS. In
the following section we will use Cp(M) as a representation for the control
structure trying to characterize

1. the class of control structures producing the same execution-traces as M
does

2. within this class of trace-equivalent systems a most simple or minimal
control structure.
This will give us the necessary machinery to develop in the next section a

method to infer such a minimal control structure from the external behavior
of a PPS.

6.5 Finding a minimal control structure

Given an environment D with a set of initial states D and a fixed set of rules
R, we are interested in the behavior of a PPS M = (R, D, Dy, C'). In particular,
we try to investigate control structures producing the same behavior in such
an environment, using a fixed set of rules. We will characterize such a class
of systems behaviorally equivalent to M and we will try to find a most simple
system M*, capable of producing the same external behavior as M generates,
but using a control structure that at least as simple as M’s control structure.

From now on, we will only compare different systems, assuming that they
have a fixed underlying production-rule based system (R, D, Dy) in common,
differing only in the control structure that may be used.

Systems, like M and Mcy,, generating the same set of application se-
quences exhibit strongly equivalent behavior. However, given an external de-
scription of the behavior of a PPS M, we are interested in a weaker form
of equivalence, only distinguishing systems if they generate different sets of
external behavior i.e. different traces:

DEFINITION 6.5.1 Let M and M’ be PPS’s. Then M is called trace-
equivalent to M', denoted as M = M’ | iff Tr(M) = Tr(M’). O

The following observation is immediate:
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OBSERVATION 6.5.1 If M = M’ then Fx); = Exyy. Hence dom(my) =
dom(mpy). O

First, we will try to find a characterization of the systems M’ trace-equivalent
to M. Thereafter, we will study systems which are trace-equivalent and most
simple or minimal in some sense.

DEFINITION 6.5.2 For very my (i) in Cp(M), the basic-control path of i,
denoted 79(7), is the result of deleting every label j in 7,(7) that does not
occur in Fx (7). O

Note that Definition 6.5.2 implies that 79,(i) is a scattered subword of m(4),
ie. w9, (1) < mar(4).

DEFINITION 6.5.3 Let S C X* be a finite set of finite sequences. S is said

to approach Cp(M) iff there exists a bijective function f : dom(Exy) — S,
such that f(i) = ia for all i € dom(Exy,), where ia satisfies

70, (1) <o = mar(4). O

EXERCISE 6.5.1 Prove that the set of all basic control paths of M and

the set C'p(M) itself approach Cp(M). Give an example to show that a set S

approaching Cp(M) does not need to be tail-consistent. O

The following theorem states that tail-consistency of a set approaching
Cp(M) is a sufficient condition for the system Mg derived from S to be trace-
equivalent to M:

THEOREM 6.5.1 If S is a tail-consistent set of sequences approaching Cp(M)
then M = Mg and Cp(Mg) = S. O

For the proof of this theorem, the reader is referred to Witteveen (1987).

Given a set of systems trace-equivalent to a given system M, a natural
question to ask is for minimal systems capable of generating T'r(M). Mini-
mality in this context can be defined in terms of efficiency of the system in
generating its behavior. As a measure of efficiency we take the overall ratio
of the number of rules executed versus the total number of rules applied (by
failure or by success). Clearly, an important determinant of the efficiency of
a system then is the length of the control paths my(i). Hence, being more
efficient can be given an operationalization in terms of being a reduction in the
following sense:

DEFINITION 6.5.4 Let M = M’. Then M’ is said to be a reduction of
M, denoted as M" T M, iff for all i € dom(Exy) = dom(Exy) we have

WM(Z) j?TM/(Z) O

So we consider M’ to be as least as efficient as M if M’ C M holds. Notice
that the relation C defines a partial order on the set of systems trace-equivalent
to M. Minimal elements of this order can be considered as the most simple
and efficient systems capable of generating Tr(M):
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DEFINITION 6.5.5 Let M* T M. M* is said to be a minimal reduction of
M iff for all M’ © M, M’ © M* implies M* C M’. O

Now, of course, the problem arises how to construct such a minimal reduction
M* of a given PPS M. We will show that there exists a simple method to find
such a minimal reduction, using the set Cp(M) and the set of basic control
paths of M. First, we prove a simple proposition.

PROPOSITION 6.5.1 For every M’ T M and every i € dom(Exy),
70, (1) = map(i). O

PROOF. Since M’ = M, Ezy = Expp. Hence, for every i € dom(Exyy),
79,(i) = 73, (7). Since M’ C M, by Definition 6.5.4, 7%,/ (i) < mpr (i) and the
proposition follows. [ |

We are now able to characterize reductions as follows

THEOREM 6.5.2 M’ T M iff Cp(M’) approaches Cp(M). O

PROOF. The only-if part is trivial. So we prove the if-part. Since Cp(M’) is
tail-consistent and Cp(M") approaches Cp(M), we have by Theorem 6.5.1 that
Mepry = M/cp(M/) = M. From Theorem 6.4.1 it follows that M’ = M,cp(M/)-
Since = is transitive, it follows that M’ = M. Since Cp(M’) approaches
Cp(M), we have my (i) = mp(i) for every i € dom(Exy) = dom(Exyy).
Hence, M’ C M. [ |

To construct a minimal reduction, in the light of Theorem 6.5.2 and Propo-
sition 6.5.1, the set of basic-control paths of M should be a starting point.
A minimal reduction then, can be obtained by adding to each basic-control
path as few rules as possible to make the set of sequences thus obtained a
tail-consistent set. Theorem 6.5.2 then guarantees that a (minimal) reduction
has been obtained.

We will now discuss a method to obtain such a minimal number of addi-
tions to basic-control paths. We start with stating, without proof, a technical
lemma, suggesting how to extend a set of basic-control paths without loosing
the possibility of obtaining a minimal reduction of M:

LEMMA 6.5.1 Let M* T M be a minimal reduction of M and S a set of
sequences approaching Cp(M*). If there exist sequences icv, j 3 € S such that
for some k,l,m € ¥

1. ikm=<ia and jkl <j(

2. iklm < mp(7)
then
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In plain words, this lemma tells us that if we have a current set of sequences S
approaching Cp(M*) and we detect that this set is tail-inconsistent we might
remove this particular occurrence of tail-inconsistency by inserting a label in
one of the sequences without loosing the property that the new set of sequences
S” approaches C'p(M*).

In fact, Lemma 6.5.1 allows for an iterative algorithm, computing a set of
sequences S such that Mg is a minimal reduction of M:

Algorithm MINIMAL
begin
Let S be the set of basic-control paths 7 of M;
while S is not tail-consistent
do
take two sequences iakmp, jo'klf € S with [ #m ;
if iaklm( < mp (1) then
S =8 —{iakmfB} U {iakimf}
else S := 5 — {jd'klf} U {ja’kmig}
fi
od
end

Observing that the invariant for this algorithm is
S is approaching Cp(M*)

the reader should have no difficulty in verifying the finiteness and correctness
of this algorithm.

ExAMPLE 6.5.1 Consider the following artificial PPS M, whose set
Cp(M) of control paths is:

m(in) = in1234 m(3) =31
7(1) = 123451 m(4) =45123
m(2) = 22345 7©(5) =5 out
with the following set Sy of basic-control paths:
70(in) =in 14 m0(3)=31
70(1) =1241 7%(4)=453
m0(2) =2235 70(5) =5 out

Since Sy is not tail-consistent (see for example 7°(1) and 7°(2)), 7°(1) is
replaced by the sequence 1234 1. Comparing again this sequence with 7°(2),
we notice again a tail-inconsistency. This time 7°(2) is replaced by the sequence
22345 and again 7°(1) and 7°(2) are not tail-consistent. 7°(1) is replaced by
123451. Continuing this process, the reader should not have difficulties to
see that after five iterations, we obtain the following set of sequences:

©'(in) =inl34 7(3) =31
(1) =123451 7(4) =4513
'(2) =22345 7'(5) =5 out



6 Process knowledge in Production Systems 209

Since this set is tail-consistent, it is the set of control paths of a minimal
system. O

REMARK 6.5.1 The time-complexity of Algorithm MINIMAL is O(n?),
where n is the number of rules involved. This can be improved by construct-
ing a smarter algorithm taking into account the order in which additions to
sequences can be made, reducing the complexity to O(n?) (Witteveen, 1987).

O

6.6 Inferring a PPS from a finite set of traces

In the previous section we discussed a method to find a canonical representation
of the control structure of a PPS with respect to the observable behavior it
generates. To find, however, such a minimal reduction, we needed complete
information about both the existing control structure and the set of traces
Tr(M) of a PPS M.

We will now discuss a method to reconstruct in a finite amount of time
a PPS M if only a finite amount of information about its trace set Tr(M)
has been presented, thus solving the so-called control-identification problem
for this class of systems.

6.6.1 Samples and failure sets

Suppose we have a PPS M = (R, D, Dy, C), but

1. the control structure C' is unknown and

2. we only have access to a finite amount of trace information, i.e. we have
access to a finite part of the external behavior of M.
On the basis of this finite amount of trace information (a sample of traces) we
want to reconstruct the control structure C' by identifying a minimal reduction
M* = M. We will show that there are (finite) samples of traces such that this
problem can be solved. First we introduce some concepts and notations.

DEFINITION 6.6.1 A sample Sy, for M is a finite, prefiz-closed subset of
Tr(M). O

If M is understood we will omit the subscript 5, in Syy.

DEFINITION 6.6.2 Given a sample S C Tr(M) for a PPS M, the ezecution
relation Exg is defined as the set of ordered pairs of labels (4, j) such that ij
occurs as a subsequence of some trace in S. Furthermore, Exg(7) is defined as
the set of labels following ¢ in some trace of S: Fxg(i) = {j|(i,5) € Exg} O

In the following we will omit the subscript g in Fzg and Exg(i) except when
confusion would arise.

When we set about selecting a sample S from Tr(M), it is clear that
not every sample will qualify to obtain information about 7'r(M). At least we
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Table 6.3. PPS for string reversal

label rule o ¢
m — 3

1 $$ — X 4 2
2 $xy —ySr 2 3
3 A—$ 1

4 $— A 4 out

would require the sample to be complete in that it reflects structural properties
of Tr(M).

DEFINITION 6.6.3 A sample S is called a complete sample if Exg = Ex);.
(I

From the definition of Tr(M) the following proposition can be verified imme-
diately.

PROPOSITION 6.6.1 For every PPS M there exists a complete sample Syy.
(Il

PROOF. Since Ex); is a finite set and T'r(M) is prefix-closed, we can collect
a finite subset F of T'r(M) such that for every (i, j) € Exyy, there exists exactly
one trace aij € F. Let S = Uper Pref(3). Then S is a complete sample, since
Fxg = Fxyy. [ |

ExAMPLE 6.6.1 The following PPS M is a simple production system for
string reversal (Zisman, 1978), where ¥, is some alphabet not containing the
symbol §, D = (£, U {$})* and the set of initial states is Dy = ¥3. The
production rules have to be interpreted as rewriting rules and it is assumed
that the left-most occurrence of the left-hand side of a rule in a string of D is
rewritten to the right-hand side of that rule. Labels, rules and control functions
are given in Table 6.3. Here x and y denote arbitrary symbols occurring in ;.
Remember that A stands for the empty word with length 0. For the sake of
simplicity, assume that X; = {a, b, c}. The set Ex, is equal to

Exy = { (in,3),(1,4),(1, out), (2,2),
(2,3),(3,1),(3,2),(3,3), (4,4), (4, out) }
Consider the execution trace
(d,w) = (abc,in 3223233144 out)

Let d, be the state of the database after execution of w on the initial state d.
The reader is invited to check that d, = cba. Let

S1 ={(d,a) | a € Pref(w)}
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Since Exg, = Fxpy — {(1, out), S; is not a complete sample. Let
(d' ") = (N, in 331 out)
and let
So =S U{(\, ) |a € Pref(w)}

Then Fxg, = Fxp, so Sy is a complete sample. O

Note that in the preceeding sections we have discussed the possibility of
coding the control structure of a PPS by means of a finite set of control paths.
These control paths contain complete information about the control structure
used. Surely, given a complete sample, we now do know which labels do occur
in the basic control paths (i) for each i € dom(FEz);) but we do not know
in which order they occur. Therefore, we will try to estimate for every (i, j) €
Exg, the control sequence from ¢ to j in order to synthesize the set of control
paths from this information. The first notion we want to introduce is the
notion of a sample failure set.

DEFINITION 6.6.4 Let (d,ij) be a trace in S. Then the sample failure
set of i and j with respect to (d,aij), denoted by fs(d, aij), is defined by:

fs(d,aij) = {k € ¥g| k is not executable in state d,; }

where Xg = rng(Ezg) and d,; denotes the state obtained after execution of ai
on d. O

Notice that fg(d, aij) tells us something about the labels occurring in the
control path m/(7) between ¢ and j. Let m be such a label. Since m is applied
by failure whenever v has been executed followed by an execution of j, such
a rule m must occur in fs(d, aij). Hence, fs(d, aij) is a superset of the set
of labels occurring between i and j in the control sequence 7y (7,). Since
this line of reasoning holds for every trace (d, aij), we can find an even better
upperbound for this set of labels by defining the sample failure set of (i, j) as

DEFINITION 6.6.5 For every (i,j) € Exg, the sample failure set of (i,7),
denoted by fs(i,7), is defined by:
fS(Zh]): ﬂ fs(d,O[Zj)

(d,aij)es =

Analogously to the sample failure set of (i,j) we can define the (real) failure
set of (i,7) € Exp:

DEFINITION 6.6.6 For every (i,7) € Exy, the failure set of (i,7) with
respect to M, denoted by ¢p(7,7), is defined as the set of rules occurring
after ¢ and before j in the control path (i) € Cp(M). 0

Note that the sample failure set fg(7, ) plays the role of an estimator for the
real value ¢p;(7, 7).
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EXAMPLE 6.6.2 Consider Example 6.6.1 and the sample S consisting of
(d,w) = (abc,in3223233144 out)
and all of its prefixes. Note that
fs(d,in32) = fs(d,in32232) = {1}
Hence,

fs(3,2) = {1}
The reader might check that
fs(3,3) = fs(d,in3223233) = {1,2}. O

To show that sample failure sets derived from complete samples can be used
as estimators for real failure sets, we have the following proposition:

PROPOSITION 6.6.2 Let S be a complete sample for a PPS M. Then for
every M’ such that M' = M and every (i,j) € Exy, onr(i,7) C fs(i, 7). O

The significance of this proposition is that it allows us to estimate the real fail-
ure set of every trace-equivalent system M’, even if M’ is a minimal reduction

of M.

PROOF. Forevery M’ = M, obviously, Ex,; = Fx ). Since S is a complete
sample, for every (i,j) € Exyp, fs(i, j) is defined.

Take some M’ such that M’ = M and let k € ¢',,(7, j) and suppose k does
not occur in fs(i,7). Then there is a trace (d,aij) € Tr(M) = Tr(M’) such
that & is executable in d,,;. However, since k € ¢,(7, j), k occurs in the control
path mys (i) before j. Therefore, if k is executable in the resulting state d,;, k
would have been applied successfully and therefore k would have been executed
instead of j.

So (d,«ij) cannot be a trace of M and a contradiction has been derived.
Therefore, for every k € ¢,(i,7), k occurs in fs(d,aij) for all (d,aij) € S
and therefore, ¢,(7,7) C fs(i, 7). [ |

Given a complete sample Sy, we can derive Ex ), and for every (i, j) € Fxjp an
estimator fs(i,7) for ¢ (i, j). For every rule i, we know that every rule j oc-
curring in Ex (i) occurs in the control path of i for every trace-equivalent M.
The problem, of course, is how the rules in Ex (i) should be ordered in order
to build an adequate control structure for a system mimicking the external
behavior of M. We will use the failure sets fs(4,j) to impose restrictions on
the order in which the rules may occur in a control sequence. The resulting
order will be called an adequate ordered extension.

DEFINITION 6.6.7 Let Sy be a complete sample. The sequence
1717273 - Jm is an adequate ordered extension, abbreviated a-o extension, of
Exg(i) if the following conditions hold:

L. Exs(i) € {j1,J2, - Jm}

2. for k=2,...,m, if jp € Fxg(i) then {j1, 72, .., Jk—1} C fs(i, jx)
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O

Such an extension is called adequate because the ordering of the rules is com-
patible with the sample failure set information.

It is not difficult to see that, for every M’ = M, the control path 7y (7)
is an adequate ordered extension of Exg(i) for every (complete) sample S
from Tr(M).

DEFINITION 6.6.8 Let S be a sample. The set E(S) is said to be an S—
admissible extension if the following conditions hold:

1. For every i € ¥g — {out}, E(S) contains exactly one sequence i «; and
this sequence is an adequate ordered extension of Fxg(7).

2. E(9) is tail-consistent. O

This definition immediately suggests a close correspondence between admissi-
ble extensions and control paths.

Our next theorem states that among all possible admissible extensions there
exists at least one extension that can be used to reconstruct the unknown
control structure C' of M:

THEOREM 6.6.1 If S is a complete sample from Tr(M) , there exists an
S—admissible extension E(S) such that Tr(M) = Tr(Mgs)). O

PROOF. Since S is a complete sample, for every i € dom(Ezy) =
dom(FEzg), mp(i) is an adequate ordered extension of Exg(i). Hence, since
Cp(M) is tail-consistent, there exists an S—admissible extension E(S) such
that £(S) = Cp(M). By Theorem 6.4.1, M and Mcy) are strongly equiva-
lent. Hence, they are trace-equivalent and the result follows. [ |

To find a suitable control structure, Theorem 6.6.1 allows us to restrict the
search space to S—admissible extensions of complete samples. This theorem,
however, does not provide a decision criterion for deciding whether or not a
given S—admissible extension can be used to build a trace-equivalent system.
To show that Theorem 6.6.1 cannot be strengthened dealing only with complete
samples, the following example shows that not every S—admissible extension
can be used to identify a correct control structure.

EXAMPLE 6.6.3 To show that completeness alone is not sufficient to iden-
tify a control structure, consider the PPS M with a set of states D = {a,b} "
and the rules and control functions as given in Table 6.4. For Dy = D,

Exy = {(in, 1), (in,2), (1, out), (2, out)
Therefore, the set
S ={(a, inlout), (b, in2 out)

is a complete sample from T'r(M). Consider the following failure sets computed
from S:

fs(in, 1)) =42}, fs(in,2)) = {1}
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Table 6.4. Simple PPS for showing the insufficiency of complete samples

label  rule o 10)

m 1 out
1 a— N out 2
2 b—a® out out

Table 6.5. Alternative PPS M’

label  rule o 10)

m 2 out
1 a— XN out out
2 b—a? out 1

Now consider the PPS M’ with the same set of (initial) states, given in Ta-
ble 6.5. It is not difficult to see that both M and M’ are compatible with the
sample S. Since M and M’ cannot be distinguished on the basis of the sample
given, both can be selected as a solution. However, note that for dy = ab,
M generates the sequence (in 1 out), computing the final state d = b, while
M’ generates the sequence (in 2 out) computing the final state d = a3. Hence,
Tr(M) # Tr(M') but it is impossible on the basis of S alone to decide which
one is a correct solution. O

6.6.2 Context-complete samples

Although a complete sample can be used to obtain some information about
the control structure responsible for generation of the observed behavior, com-
pleteness alone is too weak an assumption to guarantee correct identification
of a PPS. Therefore we will formulate a stronger assumption that can be used
to solve the identification problem in an effective way.

Note that completeness in a complete sample refers to the completeness of
the set of rules that does occur after ¢ in the sample set, for every executed
rule 7. Now there is another kind of completeness that has a bearing on the
contexrts in which a given rule j is executed immediately after the execution
of rule i. What we would like to know is when a particular rule is selected
for execution. So what we need is complete information about the contezts in
which a given rule j is executed immediately after execution of rule i. Such
a context can be given by specifying the set of rules that are executable (i.e.
those rules whose condition part matches the current state of D) after ¢ has
been executed in a given state.

To formalize this notion of context-completeness of a sample we need a few
definitions.
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DEFINITION 6.6.9 For every trace (d,w) € Tr(M), the set Posy(d,w) is
defined as the set of rules that are possible to execute in the state d, i.e. the set
of rules matching in the state d,, obtained from d by applying the sequence w
to d. O

Note that Posy/(d,wi) defines the contexrt in which the rule to be actually
executed next to the execution of ¢ has to be chosen. This formulation of a
context, however, is still dependent on the choice of the initial state. Since
we want to formulate context-completeness as a sample property, we need a
specification of context-completeness that is independent from such a particular
choice of an initial state.

Fortunately, we can prove that such a context Posy(d,wi) is independent
from the particular initial state d chosen, in the sense that for every other
pair (d',w’i) having the same context, the same rule j will be chosen next:

PROPOSITION 6.6.3  For all (dy, at), (da, Bi) € Tr(M), if
Posp(dy, ai)) = Posy(ds, (i)
then
(dy,0dg) € Tr(M) iff (da,Bij) € Tr(M). 0

PROOF. Suppose we have Posy(dy, ai)) = Posy(ds, 5i) for some (dy, ),
(do, B;) in Tr(M). Consider the control path my (i) =iy ig ..., of i. If i = out
then n = 0, so neither (dy, «ij) nor (dy, Bik) belongs to Tr(M) for any choice
of j. If i # out, n > 1 and there exist labels j and k occurring after i in
7 (7) such that (dy,aij) € Tr(M) and (do, Bik) € Tr(M). But then, since
Posy(dy, Bi)) = Posy(dy,ai), 7 and k both belong to Posy(ds, 31)) and
Posy(dy, ai). However, since j is executed after ¢ for dy and k after ¢ for dy, j
should occur before k and k before j in my/(). This is impossible unless j = k
and then the proposition follows. [ |

Proposition 6.6.3 allows us to define for every PPS M a context-selection func-
tion Csy; without the need to specify initial states: Let Csy; : ¥ x 2% — ¥ be
a function defined as:

. g if 3(d, aij) € Tr(M) [Posy(d, ai) = X]
Cs (1, X) = { undefined else

So Csyy tells us for every pair (i, X') where i is a rule executed and X a context
for some pair (d, ai), which rule j will be executed next given such a context.
By the previous proposition, we see that Csy; indeed is a (partial) function.

Note, in particular, that dom(Csys) is a finite set of pairs. By restricting
the sets Posy; and the function Csy; to a sample S of Tr(M), the sets Posg
and the function Csg can be defined analogously.

Now we call a sample to be context-complete if the sample context-selection
function Csg provides as much information as the context-selection func-
tion Csyy:
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Table 6.6. Example of a context-selection function

i X Csnr(i, X)
in {1,2,out} 1
in  {1,out} 1
in  {2,out} 2
1 {1,2, out} out
1 {2, out} out
1 {out} out
2 {1,2,out} out
2 {1, out} out

Table 6.7. PPS for string-reversal

label rule o ¢
m 3

1 $$ — A\ 4 2
2 $ry - y$r 2 3
3 A—3$ 1

4 $— A 4  out

DEFINITION 6.6.10 Let M be a PPS and S a sample from Tr(M). Then
S is called a context complete sample, abbreviated by c-complete sample, iff
for all : € 33 and X C Xy, Csg(i, X)) = Csp(i, X). 0

ExAMPLE 6.6.4 Consider the PPS M discussed in Example 6.6.3. The
function Csy, is given in Table 6.6. Consider the following traces: (a,in1 out),
(b,in2 out), (ab,in1 out) and (aab,inl out). The reader should have no dif-
ficulties in verifying that the sample consisting of these traces is a context-

complete sample. Since for this sample S we have fg(in,1) = ( and
fs(in,2) = 1, the alternative PPS, given in Example 6.6.3 is no longer com-
patible with S. O

The following observation can be easily verified:

OBSERVATION 6.6.1 For every PPS M, there exists a c-complete sample
Shr. Furthermore, every c-complete sample is a complete sample. O

ExAMPLE 6.6.5 Consider the PPS for string-reversal discussed in Exam-
ple 6.6.1 (see also Table 6.7). Let the sample S consist of the traces (and their
prefixes)

(A, in331 out)
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and
(abc,in3223233144 out).

Table 6.8 contains the arguments and values of the sample context selection

Table 6.8. Context-selection function for PPS

label i X Css(i, X)
in {3} 3
1 (3,4} 4
P (2,3,4) 2
{3,4} 3
3 {1,3,4} 1
{2,3,4) P
(3,4} 3
4 (3,4} 4

{3} out

function Csg (we have ommitted the occurrence of in and out in the contexts X
because they occur by definition in every context). By inspecting the control
structure of M the reader can verify that for Dy = {a, b, c}*, S is a c-complete
sample. O

Note that there exists an intimate relation between sample failure sets and
sample context-selection functions:

PROPOSITION 6.6.4 Let g denote the set (of labels) of rules occurring
in S. Then
fS(ivj):ZS_ U X.

Css(i,X)=5 U

EXERCISE 6.6.1 Prove Proposition 6.6.4 by careful rewriting the defini-
tions. O

We will show that a context-complete sample can be used to offer a solution to
the control-identification problem. Our first result will be given without proof.
(but see Witteveen, 1987).

LEMMA 6.6.1 Let S be a context-complete sample from Tr(M). If E(S) is
an S—admissible extension, then M = Mpgs). O

Compare this lemma to Theorem 6.6.1. Notice that context-completeness al-
lows us to conclude that every S—admissible extension is a solution to the
problem of identifying M, while Theorem 6.6.1 only stated that there exists
a solution among a possibly large number of admissible extensions. Now our
main result follows almost immediately from Lemma 6.6.1:
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THEOREM 6.6.2 Given a context-complete sample S for an arbitrary PPS
M, there exists an effective procedure to reconstruct M by a returning a mini-
mal reduction of M. O

PRrROOF. Note that using S, we can effectively determine the sets Exg and
for every (i,j) € Exg, the (sample) failure sets fs(7, 7).

Let ¥s be the set of labels occurring in S. Clearly, Xg is a finite set and,
since every sequence « occurring in a tail-consistent set of sequences over g
has to be repetition-free, there is a finite number of sets of tail-consistent
sequences over Xg and each such a set can be constructed effectively. For
each such a tail-consistent set E of sequences over Xg, it can be effectively
determined whether or not F is an S—admissible extension. If so, according
Lemma 6.6.1, the PPS M derived from FE is trace-equivalent to M.

By the reduction results obtained we can find a minimal reduction of Mg
in an effective way. [ |

EXAMPLE 6.6.6 Let us try to construct a minimal PPS M’ equivalent to
M, given only the set of rules, the sample S and the context-selection function
Csg given in Example 6.6.5. First we compute, for every (i,j) € Fxg, the

Table 6.9. Sample failure sets computed from sample S

(in,3)  {1,2,4}
(1,4) {1,2}
(2,2) {1}
(2,3) {1,2}
(3,1) {2}
(3,2) {1}
(3,3) {1,2}
(4,4) {1,2}
(4, out) {1,2,4}

sample failure function fs(7,j) given in Table 6.9. From this information, it is
not difficult to see how the rules in Exg(i) should be ordered in sequences to
obtain an S—admissible function.

e for every a-o extension of Frg(2), 2 should occur before 3
e for every a-o extension of Exg(3), 1 should occur before 3

e 1 can occur before 2 and 2 can occur before 1 in an a-o extension Exg(3).
e 4 should occur before out in every a-o extension of Fxg(4).

Table 6.10 contains the set of sequences that can be used to build an S-—
admissible set of sequences. Note that the first set of sequences S, is tail-
consistent and therefore already is an S—admissible extension. The second set
S5 has to be adapted: extending the sequence 2 2 3 to the also adequate ordered
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Table 6.10. The sets of sequences to build admissible extensions

S1 S
m3 ma3
14 14
223 223
3123 3213

44 out 44 out

Figure 6.2. Control graphs of the minimal systems inferred. For explanation, see
text

extension 2213 of Exg(2) makes the set tail-consistent. Then this set is also
an S—admissible extension. According to Theorem 6.6.2, both Mg, and Mg,
are trace-equivalent to M. Note that both systems are minimal reductions.
The control graphs of both systems are given in Figure 6.2. O

REMARK 6.6.1 Both a complete and a context-complete sample require
in the worst case O(n?) different sample traces having no prefix in common.
Assuming that the sample information is given in the form of a sample context
function, we are able to show that a PPS can be reconstructed in a time
polynomially bounded by the number of rules if there exists an M whose control
graph does not contain E?-cycles. The general problem, however, is likely to
be NP-hard and for this case we use a backtracking algorithm. O
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EXERCISE 6.6.2 Construct an algorithm to find an S—admissible extension
given a sample S. Your algorithm should construct adequate extensions in
a clever way combining them to admissible extensions. Estimate the time-
complexity of your algorithm. O

EXERCISE 6.6.3 Consider the rule-based system presented in Example 6.4.1
and let the following states be the initial states:
di =24+4%x54+3,dy=4x(2+4x5+6),d3=14+(4x(2+4x5+2)+3)
anddy=(14+4x(5+6x7+3)x5+1).
The following sample, where all prefixes of traces have been omitted, can be
assumed to be context-complete:

S: { <d1,2445),(d2,323125),
(d5,323123145),(ds,3323122315)}

Find a minimal control structure explaining this set of traces. O

6.7 Discussion

6.7.1 Applications

Elsewhere (Witteveen, 1984) we have given some applications of the identifi-
cation of programmed control structures. These applications ranged from sub-
jects as serial pattern recognition, the analysis of role programs and modeling
student’s problem solving behavior to the simplification of programmed gram-
mars in the literature. In general, we concluded that, using the PPS model, we
could infer more efficient and simpler control structures than the one tradion-
ally used. Furthermore, we could more clearly separate in protocol analysis the
stages of rule induction and behavior simulation by first concentrating on the
set of rules to be induced and then using the identification method to organize
the rules in a proper way to explain the behavior sequences.

6.7.2 Further research

Generalizations of PPS Of course, the PPS model is a very simple model.
In our experiments we found some situations in which the model was not ap-
propriate. But several generalizations can be conceived: First we can extend
the domain and range of the control functions ¢ and ¢ to X* instead of >,
allowing for formalizations of strategies. It is also possible make the selection
of a next rule dependent on predicates occurring in the rules instead of the
labels of the rules directly. In general we have to experiment with different
(admissible) control structures, motivating them on subject-dependent theo-
retical grounds and analyzing their properties mathematically. Other aspects
such as the compilation of control knowledge in the rules themselves, such as is
observed in skill-learning, could be modeled by processes as rule composition
induced by a control structure.
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Comparing control constructs In our approach we hope to develop a
formal theory of behavioral expressiveness. Note that we considered a set of
rules as a description of potential behavior. Given such a rule base, a class
of control structures defines a set of subsets of set of all possible behaviors.
Now we can compare the expressiveness of different types of control constructs
with respect to an arbitrary rule base. For example, a Markov type of control
construct (Waterman & Hayes-Roth, 1978) defines a total priority order on
the set of production rules such that always the rule highest in priority will be
chosen for execution. It is simple to show that given an arbitrary rule base,
for every Markov control structure there is a trace-equivalent PPS control
structure but not the other way around. Therefore, the PPS control construct
is more expressive than the Markov control construct.

Concurrent control Another line of further research could be the study of
concurrent control. A promising framework for studying concurrent processes
is Petri-Net theory. Representing a control structure by such a Petri net would
allow for modelling behavior of distributed systems, where concurrency is more
rule than exception.

6.7.3 Suggestions for further reading

Production Systems Hayes-Roth (1985) is an introduction to Production
Systems dealing with the formalism, its applications and relations to other
approaches in expert-systems technology. Hayes-Roth, Waterman, and Lenat
(1983) and Buchanan and Shortliffe (1984) contain a more comprehensive treat-
ments of applications of rule-based systems. Klahr, Langley, and Neches (1987)
contains a number of applications in the behavioral sciences. With respect to
representation of control, we refer to Davis (1980), Georgeff (1982, 1983) and
Clancey (1983). Although a little out of date, Waterman and Hayes-Roth
(1978) still contains some valuable contributions.

Formal languages and theory of computation In this chapter we have
only touched upon some concepts. Hopcroft and Ullman (1980), or Salomaa
(1973) are excellent introductions. Also Bobrow and Arbib (1974) contains
some good chapters on formal language theory, automata and computability.
Matters of complexity are dealt with in the classic Aho, Hopcroft, and Ullman
(1974).
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7 Phenomena of self-organization
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7.1 Introduction

In recent years, the theory of neural nets provided new tools to explain cognitive
phenomena of various kinds. Applications have been given to fields such as
learning and thinking, problem solving, language comprehension, perception
and pattern recognition. As an example of modeling cognitive phenomena on
the basis of neural nets in this paper we will present a formal approach to
phenomena of self-organization. Self-organizing systems are structures that
react in an adaptive way to signals in the environment. In this way, they are
able to build up “meaningful” ordering states that in a sense represent the
structure of the environment. The name “self-organization process” refers to
the fact that the adaptation process takes place without “supervision” simply
as a result of the external signals and the systems internal activity.

We give here a brief introduction to the rather complex subject of self-
organization processes. We report on some observations and computer simu-
lations that have been done in this area. We then concentrate on the question
how these phenomena can be described and understood in a formal mathemat-
ical approach.

We will see from our discussion how mathematical methods can be the
natural technique in formalizing certain interrelationships of a complex nature
as they occur in cognitive sciences and how highly non-trivial mathematical
problems may arise from such a description. We will see that, apart from
numerical analyses, mathematics can provide substantial insights and be an
indispensable tool in understanding natural phenomena on a qualitative level.

We assume some basic knowledge and acquaintance with mathematical no-
tation in linear algebra, real analysis, and probability theory. For background
the reader is referred to Lang (1971), Rosenlicht (1968), and Lamperti (1966),
respectively.

IThis paper was written while the author held a research position in the research project
7“Werten und Wissen”’ (Grant Al 205/4 to D. Albert) at the Psychological Institute of
Heidelberg University. The financial support by the Deutsche Forschungsgemeinschaft is
gratefully acknowledged.
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7.2 Empirical observations and computer simulations

It has been observed by neurophysiologists that in some parts of the brain,
especially in the cerebral cortex, specific tasks can be assigned to specific loca-
tions in the brain. For example, there are areas that are “responsible” for the
analysis of sensory signals (classified according to their modality, i.e., visual,
auditory, somatosensory, etc.) or for tasks of motor control, etc. (Kohonen,
1988). The neural interconnections establishing these correspondences have
revealed a certain fine-structure: they preserve topological order. This means
the following. Let us consider, for example, the neural connections between
cells of the retina and those locations in the cortex they are transmitted to.
Then the order structure is this: neighboring cells on the retina are mapped
onto neighboring cells in the cortex.

It has been argued (Kohonen, 1988; Buhmann et al., 1987) that this or-
der principle cannot be explained purely genetically. Instead, it is believed
that self-organizing processes are responsible for this ordering effect; we will
see later how models of such processes can indeed explain the generation of
topology-preserving mappings under the influence of statistically structured
sensory inputs.

The above ordering phenomenon has been investigated by computer sim-
ulations (Buhmann et al., 1987; Ritter et al., 1992). We will briefly report
on this approach because it represents an important step towards a formal
representation of these effects.

Buhmann et al. (1987) present an abstract model system in which “neu-
rons” are mapped onto elements of a space of “sensory cells”. The system is
exposed to a series of external from signals the space of sensory cells. Under
the influence of these external signals, alteration of the system parameters oc-
curs. Under suitable conditions, the system settles down in a final state. In
that state, the system of neurons in a sense represents the structure of the
“environment” given by the external inputs. The cortical area in the brain,
i.e., the set of neurons, is modeled by the square

N ={(i,j) eN* |1 <i,j <1},

[ being a fixed number which determines the size of the set N. The set of
sensory cells is modeled by the set

S={(r,y) eER*|0<2<1,0<y <1}

It is assumed that each neuron is connected to a point in the sensory square
S by means of a nerve fiber. This connection is modeled by a mapping from
N into S, each “neuron” (i, j) is associated with a certain point m,; € S. It
is assumed that this mapping is time-dependent: the associations (i,7) — m; ;
are changed under the influence of a sequence of “external signals” from S.
At the beginning of the procedure, the assignment (¢,j) — m;; is random;
see figure 7.1. The first picture represents the set S at the beginning. Points
m;; and my s, that correspond to neighboring neurons (i,j) and (i',j") are
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Figure 7.1. Example of a self-ordering process (from Buhmann et al., 1987); see
text

connected by a line.

In the subsequent adaptation process, the values m; ; are stepwise adjusted
as a result of randomly chosen “sensory inputs” (z,y) € S. The procedure is
as follows. Each time a sensory input (z,y) occurs, the neuron (i, jo) is chosen
which is “most responsible” for this location in S, i. e., the neuron (i, jo) such
that the distance between (z,y) and m;, j, is minimal. For all neurons (3, j)
in a neighborhood of (i, jo) including (4o, jo), the connections m, ; are then
shifted a little towards (z,y). The amount of the shift of m;; decreases as a
function of the distance of (7, j) and (ig, jo) and the iteration time ¢. In detail,
the shift of m, ; at iteration time ¢ is given by

(7.1) mi; — mij+ H([(i —i0)* + (j — jo)*,t] - ((x,y) — miy)
where
(7.2) H[D,t] = Hy-exp(—aot — Db 2(t))9D > 0,

b(t) = by-e @,

with Hy, ag, ¢o positive. The function H determines the size of the corrections
and the size of the affected neighborhood of (ig, jo). From equations (7.1) and
(7.2) one sees that the amount of the corrections decays exponentially as a
function of time (at a rate determined by ag) and as a function of the distance
of (i,7) and (i, jo). The size of the affected neighborhood of (i, jo) shrinks
with time which is expressed by the term b2(¢) in (7.2). H, determines the
size of the corrections at the beginning.

This procedure is applied repeatedly, each time a ‘sensory input” (z,y) is
chosen randomly. Pictures 2 and 3 in fig. 7.1 show how the system develops.
The assignment (i,7) — m;; at the beginning is arbitrary; neurons may cor-
respond to quite different locations in the set of sensory inputs S. Locations
in S that are assigned to neighboring neurons are connected by a line.

Figure 7.1 shows that the system becomes more and more ordered; in the
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Figure 7.2. Phoneme maps (from Kohonen, 1988)

final state (picture 3) one can recognize the following two effects:

(i) neighboring neurons are mapped to neighboring points in the set of sen-
sory inputs;

(ii) the neural connections m; ; are distributed homogeneously in the set of
sensory inputs.

It has been shown (Ritter & Schulten, 1986) that there is a more general
law behind the effect (ii): the final distribution of the neural connections m, ;
in a sense approximates the distribution according to which the sensory in-
puts are randomly chosen. Areas in which sensory inputs occur frequently are
covered rather densely by neural connections; neural connections disappear in
areas where only few excitations occur. From a biological and also from a
technological point of view this principle seems very economical.

To illustrate the significance of this kind of self-ordering process, we briefly
describe two further simulation experiments that have been done by Kohonen
(1988).

The first experiment was done in connection with experiments on automatic
speech recognition. In the experiment, phonemes of the Finnish language were
presented to a self-organizing system as input vectors (repeatedly, in random
order). The phonemes were described by their frequency spectra, taken at 15
different frequency channels (so the phonemes were represented as vectors in
a 15-dimensional space).

The final state is shown in figure 7.2; the first picture (a) shows which
“neuron” each phoneme became “most sensitive” to; the second picture (b)
shows which phoneme each “neuron” became most sensitive to (the points in
the plane corresponding to neurons in both cases).

This experiment shows that the self-organizing system may be used to
display similarities between the members of an “abstract” pattern space in a
metric way by means of a lower-dimensional representation.

The second example shows a system which is able to build up virtual images
of its environment. The mechanism is shown in fig. 7.3. The two arms of a
robot simultaneously touch points in a plane in random order. For each such
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point there are corresponding pairs of bending angles (1, &) and (&3, &4) for the
two joints of each arm. If the data (&1, &) or (£3,&,) are led to a self-organizing
system in a suitable way as input signals, a self-ordering process takes place
resulting in an “internal representation” of the plane; each “neuron” becomes
most sensitive to one particular point in the plane (represented by a pair of
angles). Each of the two arms in this way gives rise to a virtual image of the
plane, i.e., a mapping from the set of neurons into the “real” plane. In this
experiment done by Kohonen (1988) the two images created by the two arms
coincided very well.

7.3 Formalization of the self-organization process

We will now clarify the structure of the experiments described above by looking
at them again from a mathematical point of view. They all have a common
over-all structure which we are now going to describe on a more formal level.
We here basically follow the approach given by the fundamental work of Ko-
honen (1988).

In each of the above examples, there is a set of patterns or signals, whose
members occur in a random order as inputs to the system. In order to build
up a mathematical model, let us denote this pattern space by S, its members
by x,y, etc. Next, we have a set of processing units, called neurons, which
we denote by N. In each of the experiments, there is an initial state which is
given by a (randomly determined) mapping N — S. We further have a ran-
dom sequence x1, Ts, ... of inputs chosen from S. In mathematical terms, this
is suitably expressed by saying that xq, xs, . . . is a sequence of random variables
with values in S. Their probability distribution is characterized by some prob-
ability measure P on S. The input signals x1, xo, . . . chosen at random give rise
to an adaptation process which is described by a random mapping m from (N
into S™) where n is the number of neurons, i. e., the cardinality of N. The nat-

Figure 7.3. Feeler mechanism (from Kohonen, 1988)
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ural numbers N play the role of time. For time k € N and i < n, m;(k) denotes
the (random) image in S of the i—th neuron, given an enumeration vy, ..., v,
of the set of neurons N. We usually suppress the explicit dependence of m(k)
upon chance in the notation.

The initial state of the adaptation process is given by m(0). The mechanism
by which the adaptation takes place as function of the input signals x1, zo, . . .
will be specified below. Under suitable conditions, the system will converge
to some final state m(o0), i.e., m(k) — m(oc0) as k — oo. This final state
has, under appropriate conditions, two important properties: It is topology-
preserving (see below) and it approximates the (stationary) distribution of the
input signals (see below).

The mathematical problem arising here is to give a formal explanation
for these phenomena. As the problems concerned are highly substantial, we
will here restrict ourselves to a simple model system and show how some of
the properties mentioned above can be understood in a rigorous mathematical
way. In order to make the mathematical problem precise, we now specify
further assumptions.

Suppose S is a one-dimensional set, typically, the interval
(7.3) S={rxer|0<x<1}.

Suppose further that N is some initial segment of the set of natural numbers,
say

(7.4) N={ieN|1<i<n}

for some n € N. We assume that the random variables z; are identically
distributed and pairwise independent. That is, each of the x} s has the same
probability distribution and the outcome of xj, is stochastically independent of
that of x; for k # [. We assume that the common distribution of the input
signals xy is the uniform probability distribution on the interval [0, 1], i.e., for
each subinterval [c, d] of [0, 1] and for each k

P(zy € [c,d]) =d —c.

For each i € N let U; be the neighborhood of ¢ consisting of the neurons
(7.5) {i—1,4,i+1}NN
i.e., all “nearest neighbors” of ¢ that are contained in N, including i itself.
(Alternative definitions of this system of neighborhoods are possible; it has
been shown especially by computer simulations that it may be useful to start
with neighborhoods that are fairly large at the beginning and let them shrink
with time; cf. Buhmann et al. (1987), Ritter & Schulten (1989), Ritter et
al. (1992)). The adaptation mechanism is then defined by induction on k as
follows. Suppose m(k) has been defined. The best match for the signal z
occurring at time k is the neuron ¢ satisfying

[mi(k) — x| = min{|m; (k) — [ |7 € N};

here m;(k) denotes the value of m(k) at neuron j. The value of m(k + 1) is
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then given by

(7.6) m(k+1) = {mj(k:) + a(k:] ((:L‘)k —m;(k)) othefwise

where (a(k))reN is a sequence of positive parameters converging to 0 as k — oc.
So the new value of m at time k + 1 results from m(k) by shifting m;(k) for
those neurons j which are neighbors of the “best match” for x;, a little towards
the signal z;; m;(k) remains unchanged for all other neurons. Given any initial
configuration m(0) € S™ a value m(k) is defined for each k£ € N by the recursive
definition (7.6). Since the x}.s depend on chance, so does m(k).

Equation (7.6) corresponds to equation (7.1) on page 225. The difference
between the two equations is that the sets of neurons and external signals are
two-dimensional (so m is indexed by two parameters) in case of (7.1) and one-
dimensional in case of (7.6). In addition, the neighborhood condition in (7.6)
is encoded in the continuous function H in case of (7.1).

The significance of applying the sequence (k) in (7.6) lies in the following.
Since the system is expected to stabilize, a(k) must converge to 0 as k — oo
because otherwise the corrections of m(k) that are done according to (7.6) keep
the system changing all the time. On the other hand, a(k) should not converge
to 0 too rapidly because then the system might be “frozen” in a state that is
not ordered yet. Computer simulations and analytical considerations of Ritter
and Schulten (1989) suggest that a choice for a(k) is suitable if it satisfies

(i) alk) - 0as k — oo
but so slowly that
() T alk) = .

EXERCISE 7.3.1 A point is selected at random (uniform distribution) from
the square

(7.7) A={(r,y) eR*|0<2 <1, 0<y <1}

How big is the probability that x < y? Are the random variables x,y on the
probability space A independent? What about these questions if A is replaced
by the disc

(7.8) A ={(z,y) eR?*|2* +y* < 1}? 0

EXERCISE 7.3.2 Recall that two events A and B are independent if P(AN
B) = P(A) - P(B) (P denoting the probability function). Show the following:

(i) Two events A and B are independent if and only if A and B (= set-theo-
retic complement of B) are independent.
(i) If A, B, and C are independent, then AU B and C' are independent.
(iii) Give an example of a probability space Q and events A, B, C' C Q such
that A, B, C are not independent but A, B, C' are pairwise independent.

O
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EXERCISE 7.3.3 Try to generalize the dynamics (7.6) to higher dimensions,
for example, dimension 2 (instead of 1). In this case, work with a 2—dimen-
sional finite set of neurons, in analogy with the 1-dimensional case (7.4). Also
the set S given by (7.3) has to be replaced by a corresponding 2-dimensional
set. How can neighborhoods U; for neurons ¢ in analogy with (7.5) be defined
reasonably? O

EXERCISE 7.3.4 Explain how the entities occurring in figures 1-3 are re-
lated to the abstract model quantities N, S, m, etc. introduced above. O

7.4 Mathematical formulation of the ordering prop-
erty

The ordering effects can now be formulated more precisely by the following
statements.
(i) Ordering. There exist two states m® : N — S and m® : N — S such that,
if (k) — 0 sufficiently slowly as k — oo, the following holds: for each initial
state m(0), m(k) converges with probability 1 to either m() or m® as k — oc.
m(Y is a monotonously increasing function, i. e., ml(l) < mg-l) ifi<jeN. m®
is the reversed vector in the sense that mz(?) = mi}liﬂ fori=1,...,n.
REMARK 7.4.1 «a(k) converging to 0 sufficiently slow as k — oo in the
above statement means the following:

(1) there exists a sequence «(k) satisfying the claim of the statement (i)

(2) for any sequence o/(k) converging more slowly than a(k) to 0 as k — oo,
i.e., for any sequence o/(k) converging to 0 and satisfying o/(k) > a(k)
(k € N), the claim of the statement (i) also holds. 0

In the following statement, the number n of neurons is not kept fixed any more.
It says something about the asymptotic states of the self-organizing process in
the limit n — oo.

(ii) Asymptotic distribution. Consider for each n € N the system with n
neurons according to (7.6). The corresponding asymptotic states according
to statement (i) above, m() and m®, respectively, approximate the uniform
probability distribution on S = [0,1] in the following sense. If §,,1) denotes
the Dirac measure associated to m(?, that is, the measure having point mass 1
at each of the n values mgl) ¢t < n and A denotes the uniform probability
distribution on S = [0, 1], then

—0,,01) — A asn — 00
n
in the sense of weak convergence of probability measures (Lamperti, 1966):
1
(7.9) / Fd(58,0) = / Fd\  asl— oo
S S

for each bounded continuous function F : S — R.
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Intuitively, (7.9) states that the measure %5,”(1) approximates A in the sense
that integrals with respect to these measures converge.

Statement (i) tells us that there are two ordering states which may be
achieved as asymptotic states: the m; finally become ordered either in an
ascending or a descending chain. This ordering property can be generalized
to higher dimensions (Kohonen, 1988; Ritter & Schulten, 1989; Ritter et al.,
1992; also compare diagrams 1-3).

Statement (ii) can also be formulated in a more general setting. In par-
ticular, for any stationary probability distribution of the input vectors x;, not
just the uniform one, it would state that the asymptotic states have a limit
distribution (Ritter & Schulten, 1986).

The above statements will not be proved in this paper. They are well
supported by computer simulations (Kohonen, 1988). For a related model, the
corresponding properties have been proved by Ritter & Schulten (1986; 1989).

We will in this paper restrict ourselves to a simpler property of the model.
We will show that, under a suitable choice of the sequence a(k), the system
becomes ordered with probability 1. That means, that with probability 1
the vector m(k) will be monotonous (i.e., either monotonously increasing or
monotonously decreasing) for large enough k. This is the content of the sub-
sequent theorem 7.4.1. We then show that, for large times, the process m(k)
is approximated by a simpler deterministic process. This result is given by
theorem 7.4.2.

In order to prove the ordering property stated in theorem 7.4.1, we need
some preparation which is given by the following proposition. This proposition
presents a key idea in the proof of theorem 7.4.1: For each state of the system,
i.e., for each m € S™, there exists a sequence of signals from S that turns m
into an ordered state. So for each state, there is a chance that it will become
ordered within a finite number of steps. The number of steps necessary depends
on a.

PROPOSITION 7.4.1 Consider the process m(k) defined by (7.6) with a(k)
= « fired. For each m € S™ and each o > 0, there is a sequence of points
&1y, & from S such that m(r) defined by (7.6) with m(0) = m and x; = &
(I < r) is monotonous. Moreover, the number r of time steps needed to pass
into a monotonous state can be chosen to depend only on a, not on m. O

The proof of this proposition is left as an exercise to the reader (exer-
cise 7.4.2).

THEOREM 7.4.1 If, as k — oo, a(k) — 0 sufficiently slowly, then for all
initial states there exists, with probability 1, a ko such that m(ko) is monotonous.
O

PRrOOF. The idea of the proof is the following. For each state of the system,
there is a positive probability that the state will become ordered within a finite
number of time steps. This is shown by proposition 7.4.1.
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Consequently, the process m(k) can be compared with a Markov process
with the two states ‘ordered” and ‘not ordered’. Once the process has reached
the ordered state, it remains there for all later times; at each time there is a
non-zero probability to pass from the state ‘non ordered’ to the state ‘ordered’.

In detail, one proceeds as follows. As a consequence of proposition 7.4.1, the
probability that the process m(k) becomes monotonous within r time steps can
be estimated by a non-zero probability p uniformly for all initial configurations
m € S™, r and p depend on « which we express in notation by writing r(«)
and p(«a), respectively. Now define the following Markov process A.

Recall that a sequence of random variables (X (s))seN with values in a set
of states J is called a Markov process if for all s € N and for any sequence of
states ji, ..., Js, Jsi1 € J
(7.10) Prob(X(s+1) = jsp1 [2(1) = j1,. .., 2(s) = Jis) =

PTOb(X<S + 1) = Js+1 |$(S) - ]S>
(Prob denoting the probability law associated to the sequence (X(s))seN)-
(7.10) means, loosely speaking, that for all times s, the probabilities for pass-
ing into the next state at time s+ 1 are completely determined by the present
state of the process and do not depend on the previous history of the process.

In order to define the Markov process A, let aq,as,... be a sequence of
numbers from the interval (0,1). Let {0, 1} be the state space of the process

(standing for the states ‘ordered’ and ‘not ordered’, respectively) and define
the time-dependent dynamics

(7.11) Prob(A(s+1)=1|A(s)=1) = 1

Prob(A(s+1) =1|A(s) =0) = p(as) (s €N),
Prob refers to the probability associated to the Markov process A, Prob(X|Y)
is the conditional probability of getting X given Y. The process A(s) can

be compared with the process m(k) in the following way. If a(k) is chosen
according to the following rule:

ak)=a; for 0<k<r(a)
alk) =ay for r(ay) <k <r(ar)+r(as)
alk)y=az for r(a)+r(ag) <k <r(a)+r(az) +r(as)
and so on, i.e., if a(k) remains constant on successive time intervals of lengths
(), then
P(m(k) will finally become monotonous) > Prob(A(s) will finally be 1)

(here p denotes the probability associated to the process m). For the latter
probability we have the explicit formula

(7.12) Prob(A(s) will finally be 1) =1 — JJ(1 — p(as))

s=0
by the Markov property of the process A (see exercise 7.4.3). Letting oy — 0
sufficiently slowly as s — 0, the product in 7.12 will be 0, so the probability in
question will be 1. [ |
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Figure 7.4. Self-ordering process with « = 0.1, 250 time steps

While theorem 7.4.1 tells us that ordering will occur at some time with
probability 1, the following proposition states that the ordering is preserved
for all later times. Theorem 7.4.1 and proposition 7.4.2 combined show that,
with probability 1, the system will be finally ordered, i.e., it will be ordered
from some time on.

PROPOSITION 7.4.2 Suppose that for some kg € N m(kg) is monotonous.
Then, with probability 1, m(ky) is monotonous for all k > k. O

The proof of this proposition is easy and is left as an exercise (exercise 7.4.4).

We finish this section by describing the dynamics of the system in the limit
of a large time scale and € — 0. We show, that, as a consequence of the law of
large numbers, for large times the dynamics is approximated by a deterministic
dynamics, i.e., a dynamics that does not depend on chance.

To explain that, consider figures 7.4-7.6. Figures 7.4-7.6 show the devel-
opment of the process m(k) given by (7.6) under three different conditions.
In the first case, a(k) is chosen to be 0.1 constantly, in the second case 0.05,
and in the third case 0.01. In all cases, n = 5, i.e., there are 5 neurons. The
values of m;(k) (i = 1,...,5) as functions of time are depicted in each of the
diagrams, so in each diagram, there are 5 curves. The initial configuration
in the space [0, 1] is in all three cases chosen to be (0.4,0.2,0.35,0.5,0.6). In
figure 7.4, the process is shown for 250 time steps, in figure 7.5 for 500 time
steps, and in figure 7.6 for 1000 time steps. The curves depicted are the result
of a simulation.?

One sees that, by letting a become smaller and observing more time steps,
the process m in a sense converges to a smooth limiting process. Smaller values
of a (which determine the size of the corrections made at each time step, see
(7.6) ) are compensated by a larger time range. Random irregularities of the
curves representing the time development in this way vanish.

2The author is grateful to Matthijs Kadijk for providing these simulation results.
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Figure 7.5. Self-ordering process with a = 0.05, 500 time steps

To give an explanation of this fact, consider the case that for some k the
m;(k)‘s for some k have already ordered, that is, m(k) is monotonous. Without
loss of generality, we may assume that the ordering is increasing (the opposite
case is handled symmetrically). According to proposition 7.4.2, the ordering
will be preserved for all later times. In this case, the description of the dynamics
of the system is less complicated than in general. One easily checks that by
equation (7.6) a value m; can be affected only if the signal x lies in an interval
S; defined as follows:

fori = 1: S; = [0,1(ma +mg)]
fori = 2: S; =10, 5(ms +my)]
for3<i < 1—-2: S, = [%(mi_g +m;_1), %(miﬂ + miio)
fori = [—-1: S; = [%(ml,g +my_s), 1]
fori = 1 S; = [%(ml_g + ml_l), 1].

Since the probability distribution of the z}s is known, one can calculate the
expected change of the ms under the condition that the state at time k is m,

0.8
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0 ! ! ! !
0 200 400 600 800 1000

Figure 7.6. Self-ordering process with a = 0.01, 1000 time steps



7 Phenomena of self-organization 235

using formula (7.6). An easy integration shows
for3<i<n—2: E(mik+1)—mik)|mk)=m)
a(k) ., m; m; mi_1 + m;_
e e

Here E( | ) denotes the conditional expectation. Similar formulas, corre-
sponding to (7.9), hold for the cases i =1,i=2,i=n—1,i=n.

Now, in the long run, the actual distribution of the signals x; will resemble
with high probability their stationary probability distribution. This is a con-
sequence of the law of large numbers (Lamperti, 1966), which can be applied
here since the z}s are mutually independent. According to the subsequent
theorem 7.4.2; the dynamics of m(k) is therefore approximated by the follow-
ing deterministic dynamics u(t) corresponding to (7.6) in which the influence
of the random z}s is modeled simply as if at every instant of time they were
smeared out over [0, 1] according to their probability distribution:

du.
for3<i<n-—2: dlj: = /Lq-@i_ui)d)\
1 % 7 i— i—
(7.13) - 5[(% —w)? — (% —w))

Similar equations apply to the cases i = 1,1 =2, i =n—1, 1= n.

u is a function N x Ry — S, where R = {t € R |t > 0} plays the role of
time. The approximation argument is made precise by the following theorem.
By m® for @ > 0 we denote the process m as defined above with a(k) = «
constantly for all k.

THEOREM 7.4.2 Consider the process m®(k) defined as above with o > 0
fized instead of a(k). Let P denote the probability law associated to the process
m(k). Define

M) =m*([a7'()])  (tE€R4),
where [a~1t] denotes the largest natural number which is < a~'t.

Let m(0) € S™ be monotonous, i. e., ml(»o) < m;p) fori < j <n. Ifu denotes

the solution of (7.13) with initial value m®), we have
M, —uasa—0
in the following sense: for any time interval [0, T], T > 0, for any € > 0,

(7.14) P(sup |M*(t) —u(t)] >¢) — 0 as o — 0.
te[0,7]

This means that the probability that M®(t) deviates from u(t) for somet € [0, T]
by more than € converges to 0 as o — 0. O

This theorem intuitively says the following. If in equation (7.6) the size
of the corrections due to single signals is decreased (via a)) but, on the other
hand, more corrections are made due to a correspondingly larger time scale, the
resulting process converges to the deterministic process u. Since the sequence
a(k) in (7.6) was required to converge to 0, this shows that, for large times,
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the process m(k) is approximated by the deterministic process u. The proof
of theorem 7.4.2, which is rather technical, will be given in the appendix.

We have thus completed our task of giving a formalization of the self-
organizing processes mentioned earlier. The formalization enabled us to for-
mulate some properties that give, at least for a simple model system, an ex-
planation of the ordering phenomenon occurring in the self-ordering processes
concerned. Theorem 7.4.1 and proposition 7.4.2 show that, in a probabilistic
sense, ordering will occur almost surely, if the function a/(k) is suitably chosen.
Theorem 7.4.2 shows that in a sense there exists a deterministic approximation
of the process m. Future research may aim at a more rigorous understanding
of the asymptotic properties of the process m. In particular, a further study
of the limiting behavior of the process u for large times might leed to a proof
of the ordering property stated on page 230, using the approximation result
given by theorem 7.4.2.

An analysis of the asymptotic behavior of a similar self-organizing process,
based on a different method of proof, has been given by Ritter & Schulten
(1989). In that paper, among other things, also the statistical fluctuations
around the asymptotic equilibrium state are studied. The asymptotic state
itself has been investigated in Ritter & Schulten (1986).

EXERCISE 7.4.1 Show for simple cases of non-monotonous initial condi-
tions (for example: n =3, 0 < my; < m3 < mg < 1) how a sequence of signals
xk can be selected so that the vector m becomes monotonous by applying the
dynamics (7.6). Suppose a(k) has some constant value between 0 and 1. O

EXERCISE 7.4.2 Give a proof of proposition 7.4.1 (Hint: select the se-
quence of signals &1, ..., &, according to the following strategy. By induction
on [ < n, “clean up” the intervals [0,m;] in the sense that none of the points
mMys1, - ., my, falls into the interval [0,my]. For [ = n, this means that m is
monotonously increasing. If a monotonously decreasing state is aimed at, work
with intervals [my, 1] instead of [0, m;|. The question whether m should become
monotonously increasing or monotonously decreasing depends on the position
of m,, relative to m;. If m,, > m, at the beginning, let m become monotonously
increasing, otherwise monotonously decreasing.) a

EXERCISE 7.4.3 Give a proof of formula (7.12) in the proof of theo-
rem 7.4.1. (Hint: Show that the probability of the complementary event,
namely the event that A(s) will stay 0 for all times, equals [T, (1 — p(a(s))).
Do that by showing that for each ¢

t

Prob(A(s) =0for s =1,2,...,t) = [J(1 — p(afs))).

s=1

Prove that by induction on ¢, using (7.11) and the Markov property of A. O

EXERCISE 7.4.4 Give a proof of proposition 7.4.2. Show that, under the
assumption that the initial configuration m(0) is monotonous, for any choice
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of the signal xy, m(1) as calculated according to equation (7.6) is monotonous.
O

EXERCISE 7.4.5 Let (2, P) be a probability space and let X,, for m € N
and Y be random variables 2 — R. The sequence (X,,)men is said to converge
to Y in probability if the following holds: for any ¢ > 0,

P(| X, = Y| >¢) = 0asm— oo.

Check how this concept of convergence is related to the following alternative
ones. (Check if some of these concepts are related by an implicative relation by
proving the implication or by finding counterexamples. In counterexamples,
one can conveniently use Q = [0, 1] with the uniform probability measure.)

(i) forallw € Q, X,,,(w) — Y(w) as m — o0
(ii) there exists w € Q such that X,,(w) — Y (w) as m — oo
(i) F(X;,) — E(Y) as m — oo where E denotes the expected value
(iv) E|Xm — Y| — 0asm — oo.
Is the concept of weak convergence in any way related to the statement (7.14)?
O

7.5 Appendix:

In this appendix we prove theorem 7.4.2.

Let us fix a monotonous initial value m(® € S™ and consider the corre-
sponding processes M®(t) and u(t) with u(0) = m®. Let us also fix 7' > 0.
We are going to verify the claim for this 7. Choose 7 > 0. We will estimate
how much M?*(7) differs from u(7), if @ and 7 are small.

Let 6, for any x € R denote the point mass at point x, that means the
measure given by

5.~ {

Let v be the (random) measure

1 ifxeA
0 otherwise for any A C R

This is the distribution of signals x; up to time 7o ™!

integer part of Ta .
Now define the vector (M, -(a’T))ign componentwise by

where [Ta™!] is the

(M) = my(0) + [ = mi(0)]dv(x).

This vector describes the state of the following alteration of the process M*
at time 7: the state vector is not updated at every time step; instead, signals
zy, are collected over the time interval [0, 7a '] and then updating is done all
at once for this collection of signals. The areas of influence S; are defined as
on pg. 234, referring to the initial state m(0).
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A suitable quantification of the difference of M?(7) and M(*7) is the term
E|M*(1) — M7
where E denotes the expected value.
One shows, by using the dynamical equation of M®, that
(7.15) E|M®(1) = M“7| = o(r)
uniformly in «. The notation F(7) = o(7) for real functions F' means that
TF(1) =0 asT —0.
Now, by the law of large numbers (Lamperti, 1966), if A\ denotes the

Lebesgue measure on S = [0, 1] (i. e., the uniform measure), we have av — 7
as a — 0 in the sense that for any bounded continuous function f: S — R

E\a/fdl/—T/fd)\] —0asa— 0.
S S
Consequently, for each ¢ < n and for each 7 > 0,

(7.16) ﬂMﬁﬂ—mM®+TLx—nmmwﬂeﬂamwﬁﬁ

7

Corresponding to the estimate (7.15) one obtains for u(7) the estimate

(7.17) |muy{mmn+féx—nmmwnzqﬂ

7

So combining (7.15)—(7.18) we have the estimation
(7.18) E[M(7) — u(7)| < o(7) + ¢(a)
for some functions ¢ and ¥ : R; — R satisfying

pla) - 0asa—0

7 o(r) = 0as T — 0.

We note that all estimates (7.15)—(7.18) hold uniformly for all initial values
m® € S™. Applying the same argument for each time interval [x7, (k + 1)7],

k=12 ..., [;], to the solution wu(t) of (7.13) with random initial condition
u(kT) = M*(kT), one gets the estimate
(7.19) E|\M* (k1) — u(s7)| < Ct7ro(7) 4+ ¥(a)

for some constant C' > 0 for all x < [£], using differentiability of u(t);<y with
respect to the initial value u(0) (see Coddington & Levinson, 1955).

Moreover, using (7.19) for a sufficiently dense net of points of the form
k- 7(r >0,k < [£]) in [0,T] and taking into account the boundedness of all
parameters appearing in the dynamical equations for u and M, one then gets
for every € > 0

P(sup |M“(t) —u(t)] >e) = 0asa — 0
t<T
as we claimed.

We note that the convergence (7.19) is again uniform in the initial condition
(0)
m® e S.
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procedure, 57
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relation, 79
binary relation, 59, 79
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Markov, 35
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choice heuristic, 88, 106
choice heuristic, -s, 92
choice heuristics, 105
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closed, 64
closed set of Markov states, 37
closure
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closure operator, -s, 64, 125
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cognitive
demand, -s, 84

cognitive demand, -s, 84
cognitive demands, 99, 104
cognitive operations, 145
cognitive structure transformations,
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cognitive structures, 146
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complement structure, 17
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component space, 86
component structure, -s, 84
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problem, 83

problem, -s, 86

problems as sets of, 84
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computer simulations, 50
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conflict-resolution, 193
congruence, 131
connection

Galois, 68, 69, 124
construction

problem, 83

systematical problem, 83
construction and ordering prob-

lems, 86

construction rule, -s, 94
context

(formal), 122
continuing a series of numbers, 99
contrast model, 117
control identification problem, 191
converse, 64
coordinatewise order, 88
coordinatewise ordering rule, 100
cortex

cerebral, 224
covering relation, 119

decision problem, 105
decision task, 105
decision theory, 88, 89, 92, 105
demand, -s
cognitive, 84
deterministic assessment procedure,
-s, 23
deterministic dynamics, 233
diagnostic
procedure, -s, 82
diagnostic procedure, -s, 82
difference
symmetric, 19
differential
semantic, 114
dimension, -s, 106
discriminative knowledge structure,
4
distance, 19
distribution

7 245

stationary, 39

uniform probability, 228
dominance rule, 88, 106
dual, 119
dynamic, -s
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experimental investigation, -s, 93
expert, 72
expert judg(e)ments, 57
external signals, 224

failure
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state, 61
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failure state, 61
fair assessment process, 29
final state, 228
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information, 146
information system, -s, 108
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input

sensory, 224
integration of information, 159
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interpretation function, 153
interpretation system, 152
interpretation, -s, 153
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judg(e)ment, -s
expert, 57

knowledge
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space, 14
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knowledge assessment, 105
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Knowledge representation, 145
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lexicographic order, -s, 90
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linear

order, 79
linear order, 79
linearly ordered attributes, 88
lower bound, 121
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Markov
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Markov process, 232
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ergodic, 37

ergodic set of, 37
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Markov/Markovian
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misconception, -s, 108
model

contrast, 117
modeling, 145

7 247

monotonous, 231
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number series, 99
number series problems, 99
number, -s
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operator, -s

closure, 64, 125
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ordering
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postulated quasi-ordinal knowledge
space, 102

power

set, 82
power set, 82, 102
preference relation, 105, 106
principle

ordering — of set inclusion, 86
principle of

ordering — set inclusion, 95
principle of sequence inclusion, 108
probability distribution

uniform, 228



248

probability, -ies
error, 28
guessing, 28
transition, 29
problem
component, -s, 83
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procedure
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procedure, -s
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process
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Markov, 232
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stochastic, 27
stochastic assessment, 28
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product
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product formation, 100
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product formation based rules, 87
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knowledge space, -s, 82
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quotient lattice, 132

random variable, 27
reachability relation, 36
reading and writing abilities, 58
relation
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surmise, 7
relation, -s
‘component-based’
establishment of surmise, 83
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covering, 119
equivalence, 120
implication, 60, 69
surmise, 81, 83, 86
relational structure, 118
relations between structures, 184
resolution
conflict, 193
response pattern, -s, 97
response patterns, 102
response rule, 28
restriction, 10
rule
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marking, 28, 32
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response, 28
selective marking, 32
rule detection, 99
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product formation based, 87
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selection, 159

selection function, 153
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semilattice
join, 130
sensory input, 224
series of numbers
continuing a, 99
set
power, 82
set inclusion
ordering principle of, 86, 95
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of components, 84
ordering principle of — inclusion,
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problems as — of components, 84
sets of components, 84
problems as, 84
signal, -s
external, 224
simulation, -s
computer, 50
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solution frequency, -ies, 95
space
knowledge, 14
space, -S
component, 86
failure, 61, 68, 69
knowledge, 62, 82
quasi-ordinal knowledge, 82
theory of knowledge, 80
state, -s
asymptotic, 230
closed set of Markov, 37
ergodic Markov, 37
ergodic set of Markov, 37
failure, 61
final, 228
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Markov, 36
periodic set of Markov, 37
transient Markov, 37
stationary distribution, 39
stochastic assessment process, 28
stochastic process, 27
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strict linear order, -s, 90
structural information, 146
structural information content, 153
structure, 146
associated knowledge, 9, 14
complement, 17
discriminative knowledge, 4
knowledge, 4
structure, -s
component, 84
knowledge, 81
relational, 118
structuring, 159
subgoal, -s, 94
subgraph, 149
substructure, 169
superordination, 112
support, 29
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relation, 7
relation, -s, 81, 83, 86
system, 14
surmise relation, 7, 86, 105
surmise relation, -s, 81, 83
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establishment of, 83
surmise system, 14
surmise system, -s, 71
establishment of, 88
surmise-systems, 82
symmetric difference, 19
system
surmise, 14
system, -s
surmise, 71
systematical
problem construction, 83
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theory
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ordering, 79
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topology-preserving, 228
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transition probability, -ies, 29

ultrametric inequality, 115
uniform
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unitary process, 34
upper bound
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random, 27



