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Project

Main objectives of ITHACA1:

• Develop and test a civic engagement platform

• Integration of AI applications

• Ensure accessibility & usefulness for all

1 EU Project (2023-2026): https://www.ithaca-project.eu/project/; https://cordis.europa.eu/project/id/101094364
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Introduction

Large language models (LLMs) for inclusivity5

2 Davies & Procter, 2020; Guldvik et al., 2013 ; 3 Wang et al., 2024; Kuran et al., 2020; Krupiy, 2020 4 Fischer et al., 2020; 5 Garcia Valencia et al. 2024; picture created with Microsoft‘s AI image generator
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Introduction

• Misunderstanding LLMs

 → misuse, privacy risks & over-reliance6 

• Experts believe the public to have misconceptions7 

• Measurements of public‘s knowledge about LLMs are self-assessments8

• We need an objective assessment of (mis)conceptions about LLMs

6 Weidinger et al., 2022;, Navigli et al., 2023; 8 Bewersdorff et al., 2023; Henestrosa & Kimmerle, 2023; Amaratunga, 2023; 7 Bodani et al., 2023, Henestrosa & Kimmerle, 

2023; Lee & Park, 2024, picture: https://www.turingcollege.com/playbooks/chatgpt-in-education 4 / 17



Research Questions

• Technical requirements for an accessible civic participation platform 
from diverse groups? (Study I)

• Individual knowledge needed for beneficial AI use? (Study I)

• Public‘s misconceptions about LLMs? (Study II) 

• Do publics‘ (mis)conceptions about LLMs‘ have underlying prerequisite 
relations? (Study III)

5 / 17



Questionnaire study and focus groups (Study I): 

Exploring technical and individual requirements 
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Development of a technical requirement questionnaire

Technical requirements of

vulnerable group members (N=39) & municipality employees (N=35)

Discussion of with municipality managers (N=10)

Discussing individual requirements for AI applications with AI 
experts (N= 6 / 7 per session)



Outcomes of technical requirements (Study I):

Highly desired technical applications:

• Chatbot for interaction

• Language translation

• Language simplification

• Text-to-Speech / Speech-to-Text

7 / 17
Picture: https://chatgpt.com/



Semi-structured interviews (Study II)

Exploring knowledge & misconceptions about ChatGPT

• What misconceptions does the public have? 

• Actual misconceptions vs. experts‘ assumptions?
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Semi-structured interviews (Study II):

10 Mayring, 2014; Friese, S., 2019; picture created with Microsoft‘s AI image generator
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- at least heard of ChatGPT

- not received AI-/ data science education 

Qualitative content analysis10: Category formation & assignment

Expected outcome: 
• List of correct conceptions 

• List of misconceptions 

~15 citizens who have



(Observable) Statements from interviews Underlying (Mis)conceptions
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‘ChatGPT has a deep 

understanding about the topics 

it’s trained with’

Trained on data (✓)

Deep understanding (✗)

‘If ChatGPT has no information 

stored in its database about a 

topic, it will inform me about this 

limitations’

Stores pre-recorded info 

about topic in a database(✗)

Informs about its limitations (✗)

Has limitations (✓)

Deducing (mis)conceptions from interviews (Study II):



Conceptualization of an adaptive assessment method 
(Study III)

1) Identifying a theoretical concept structure of (mis)conceptions

Knowledge Space Theory12 extensions: 

competence-performance approach13 & modeling misconceptions14 

→formal foundations modeling through prerequisite relations of knowledge 
components15

12 Falmagne et al., 1990; 13 Korossy, 1997; Stefanutti et al., 2023; 14 Lukas, 1997; Stefanutti et al., 2020  15 Doignon & Falmagne, 2012 
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(Mis)conceptions Potential Prerequisite Relations

LLMs are trained on data Limitations 

Responses based 

on probabilistic 

predictions
Biases in 

LLM’s 

training dataNo true 

understanding

Theoretical concept structure (Study III):

No pre-recorded 

information like an 

indexed database

No automatic 

information about 

limitations

Output reflects 

biased training 

data

Trained on data (✓)

Deep understanding (✗)

Stores pre-recorded information 

about topic in a database (✗)

Informs about its limitations (✗)

Has limitations (✓)



Conceptualization of an adaptive assessment 
instrument (Study III):

1) Identifying a theoretical concept structure of 
(mis)conceptions

2) Item construction

• Based on identified (mis)conceptions & technical state-of-the-art 
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Validation of the theoretical knowledge structure (Study III) 

3) Validating the theoretical concept structure with empirical items 
responses16

• H1: Items with a higher level of complexity are solved less frequently than 

items with a lower level of complexity. 

• H2: The knowledge (correct conceptions and misconceptions) about LLMs 

(empirical response patterns) follows the assumed theoretical structure.

14 / 17
16 e.g. Kump, 2006; Ley  2006



Open Questions
 

   

ML for identifying a theoretical concept structure? 

• Prerequisite relations in online learning courses using 
LSTM-based neural networks17 

• Knowledge graph construction using keyphrase

extraction & sentence encoders18 

15 / 1717 Xiao et al., 2021;  18 Alatrash et al., 2024, 



Challenges

• Uncertainties in LLMs‘ mechanisms

• Communicate the blackbox of exact mechanisms

• Technological advances

• Resistant to consistent model developments

16 / 17 

Input

Output

Black box



Thank you!
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Identifying socially vulnerable & marginalized individuals 
(Study I)

21

vulnerable / marginalized  social groups

• low income

• poor living conditions

• precarious employment / (repeated) unemployed

• lack of insurance

• low educational background

• limited educational opportunities

• low digital literacy and/or particular need for support 

wrt to digital platforms

• limited access to infrastructure / mobility

• limited access to cultural program and information,

• social isolation / loneliness

• structural /systematical discrimination concerning 

participation

• facing physical and/or verbal violence

• Elderly / pensioners (e.g. 60+)

• Younger / youth (i.e. 18-30)

• Refugees & Migrants 

• Roma people

• People with physical disabilities

• People with mental disabilities and/or problems                 

(e.g. depression, addiction, etc.)

• People in rural areas

• Homeless people

• People of colour

• Women (Pregnant women &) women with young 

children

• Families with many children (e.g. >3)

• Single parents

• LGBTQIA+

vulnerability criteria / factors



Technical requirements questionnaire (Study I)

22 / 20Open-answer field after every cluster of possibilities 



Metrics for fairness in AI

Table by Loi, I., Zachos, P. & 

Moustakas, K. 

in

Zangl et al. (2023) Trustworthy AI 

compliance practices, assessment and 

conceptualization
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