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Table 2
Comparison (BEST and Bayes Factor) of Overall grade point average (GPA) and GPAs of the Practical Courses of their First Academic Year (GPA 1st year) between ITE Students
Believing (True) or Rejecting (False) Neuromyths (NM)

Overall GPA GPA 1st year
M difference Effect size Bayes Factor M difference Effect size Bayes Factor
1. We only use 10% of our brain. —0.021 [-0.092 0.053] —0.094 [—0.425 0.226] 1/6.15 —0.004 [-0.017 0.003] -0.136 [-0.467 0.191] 1/4.89
2. Individuals learn better when they 0.209 [—0.299 0.742] 0.560 [-0.622 1.789] 1/1.35 0.463 [0.121 0.71] 4.13 [—0.351 11.138] 1/1.86

receive information in their preferred
learning style (e.g., auditory, visual,
kinesthetic).
3. Short bouts of co-ordination exercises  0.055 [—0.182 0.306] 0.213 [-0.656 1.106] 1/3.06 0.040 [—0.056 0.193] 0.401 [—0.796 1.658] 1/2.99
can improve integration of left and
right hemispheric brain function.
4. Differences in hemispheric dominance  0.134 [-0.122 0.407] 0.532 [—0.429 1.488] 1/2.22 0.169 [—0.174 0.72] 0.618 [—0.945 2.436] 1/2.28
(left brain, right brain) can help explain
individual differences amongst

learners.

5. Children are less attentive after 0.013 [-0.076 0.103]  0.049 [—0.313 0.402] 1/5.26 0.000 [0.000 0.000] 0.001 [-0.303 0.302]  1/5.54
consuming sugary drinks and/or
snacks.

6. If pupils do not drink sufficient —0.096 [-0.273 0.076] —0.407 [-1.141 0.316] 1/2.46 —0.128 [—0.28 0.007] —0.929 [-1.988 0.053] 1/2.49

amounts of water (6-8 glasses a day)
their brains shrink.
7. Learning problems associated with —0.124 [-0.24-0.008] —0.463 [-0.907-0.027] 1.17 —0.027 [-0.091 0.014] —0.320 [-0.887 0.211] 1/1.2
developmental differences in brain
function cannot be remediated by
education.
8. Children must acquire their native 0.076 [—0.014. 0.169] 0.313 [—0.055 0.696] 1/1.82 0.000 [0.000 0.000] 0.002 [—0.321 0.317] 1/1.73
language before a second language is
learned. If they do not do so neither
language will be fully acquired.
9. There are critical periods in childhood —0.034 [-0.112 0.043]  —0.144 [-0.465 0.187] 1/4.06 0.000 [0.000 0.000] 0.002 [-0.286 0.289] 1/6.17
after which certain things can no
longer be learned.

Note. GPAs ranged from 1 to 5, with higher values representing higher academic achievement. The 95% high density interval of the estimated mean differences and effect sizes are given. Teacher education students
indicated whether they believed in neuromyths (true), rejected neuromyths (false), or did not know.
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Measurement bias in intensive longitudinal data

The longer (preprinted) reads:
[m] pc¥? [m]
r.

Krammer, G. (2024, July 7*). When we measure differently every day: a ML-SEM
simulation study on within-person nonuniform measurement bias in intensive
longitudinal data. https://doi.org/10.31219/0osf.io/fm253

. I-

'H!;I' -! Krammer, G. (2024, August 13t%). The Between-Not-Within fallacy coined and
exemplified: why studying a within-person uniform measurement bias is

driven by between-person differences in intensive longitudinal data.

https://doi.org/10.31219/0sf.io/7x8s
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Examples with six items per scale:
Agentic/Neurotic narcissism via NGS & NVS (crowe et al., 2016, 2018)
Grandiose/Vulnerable narcissism via SB-PNI (pincus et al., 2009; Schoenleber et al., 2015)
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Multilevel structural equation models
(Ludtke et al., 2007; Mehta & Neale, 2005; Muthén & Satorra, 1995; Stapleton, 2013)

" Intensive longitudinal data = two-level data structure:
the respondents are the nesting factor

" SEM have a long tradition of testing psychometrical soundness multiple-item
guestionnaires.

" Emerging reviews show a lack of studies reporting psychometric properties in

intensive longitudinal data.

h For example, ambulatory assessment:
only 30% of the surveyed studies
report psychometric properties and
origin of items/scales. (rrull s ebner-priemer, 2020)

ol e >< : >< n§>< ) wantes

Krammer



JXU

Institute of
Business and
Vocational Education

t1 Extraversion:

“I am the life of a party”
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Extraversion:

“I am the life of a party”
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MI across levels (ak 2019
MI across clusters & cluster bias yak et al.. 2013)

longitudinal measurement invariance (v et al., 2017)

alignment optimization et al. (pokropek et al., 2019)

Within-person nonuniform measurement bias



1
2
3
5

: none
: 1 item biased

and 4): 2 items biased
: 4 items biased

)
)
)
)
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3x5x3x5x2=450conditions

3 sample sizes with n € {50, 100, 200}

5 numbers of re-testing per subject with t € {10, 20, 30, 50, 80}
3 ICCs: § with M =0 and SD, € {1, 2, 3}

5 qualitatively different types of nonuniform measurement bias

2 strengths of nonuniform measurement bias (low, high): AA , € {.3, .5}

1000 data sets each in R (r core Team, 2023b)

packages: lavaan (rosseel, 2012) psych (revelle, 2019) multilevel (Bliese, 2022)
parallel (R Core Team, 2023a) doParallel (Corporation & Weston, 2022)

Response format: visual analogue scale
(Jauk, Blum, et al., 2023; Jauk, Olaru, et al., 2023; Maliske et al., 2023)

7

cf. ML-SEM in the literature

(Kim et al. (2016): found level 1 factor loadings with an average range of 0.41 - 0.83)

cf. prior simulation studies
(Hsu et al., 2015; Kim & Cao, 2015)

realistic value for multiple-item questionnaires in intensive longitudinal data
(cf. Study 1 and Study 3b in Rogoza et al., 2024)

leaves ample room for varying it across time points of measurement to
introduce within-person nonuniform measurement bias



For each data set...

. items‘ ICC
. fit ML-SEM
. 2-statistic:
. CFl:

- RMSEA:

- SRMR-b:

- SRMR-w:

Guiding principals:

Krammer

p<

.99,
.10,
.08,
.08,

varying suggestion for cut-offs

(Byrne, 2013; Hu & Bentler, 1999; Marsh et al., 2004; Schermelleh-Engel et al., 2003)

single-level SEM as guideline

(guidelines for evaluating ML-SEM fit are predominantly based on the single-level SEM: Kim et al., 2016)
computing ML-SEM fit indices can be ambiguous: what is the sample size

(Mehta & Neale, 2005).

.05

.95, .90
.08, .06
11
11
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Type | error: *-statistic <.5% & fit indices even with strictest cut-offs < .6%

Power: (adequate power: .80, at least medium ICCs, at least 2 biased items)

ICC medium high
to detect a... ...low strengths bias ...high strengths bias  ...low strengths bias ...high strengths bias
p<.05 n =100, each 50 times n =50, each 20 times n =50, each 30 times  n = 50, each 10 tumes
n = 200, each 30 times n = 100, each 20 times
n = 200, each 10 times
CFI>= .99 underpowered n =50, each 20 times n =50, each 80 times  n = 50, each 10 times
n = 100, each 50 times
n = 200, each 30 times
CFI>.95 underpowered underpowered underpowered n =50, each 30 times
n = 100, each 20 times
CFI1>=.90 underpowered underpowered underpowered n =200, each 80 times
RMSEA < .06 underpowered underpowered underpowered n = 50, each 20 times
RMSEA < .08 underpowered underpowered underpowered n =200, each 30 times
RMSEA < .10 underpowered underpowered underpowered underpowered
SRMR-between < .08 underpowered underpowered underpowered underpowered
SRMR-between <.11 underpowered underpowered underpowered underpowered
SRMR-within < .08 underpowered underpowered underpowered underpowered
SRMR-within < .11 underpowered underpowered underpowered underpowered

Side note on SRMR-w: in certain conditions power decreased with larger data sets.

(similar, Marsh et al. (2004): in certain conditions single-level SRMR less power with higher sample sizes)

Krammer
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ML-SEM fares very well in assessing psychometric properties of multiple-
item questionnaires in intensive longitudinal data.

Type | error: very good - too good?
- still, don‘t ignore <y 2-statistic (creiff & Heene, 2017)

Power for detecting within-person nonuniform measurement bias:

- x*-statistic +
- CFI +
- RMSEA + -
-~ SRMRs -

When using short scales in intensive
longitudinal data:
Please check psychometric properties!
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The longer (preprinted) reads:
[m] pc¥? [m]
r.

Krammer, G. (2024, July 7*). When we measure differently every day: a ML-SEM
simulation study on within-person nonuniform measurement bias in intensive
longitudinal data. https://doi.org/10.31219/0osf.io/fm253

. I'
. 'H!;I' -! Krammer, G. (2024, August 13t%). The Between-Not-Within fallacy coined and
th r exemplified: why studying a within-person uniform measurement bias is
|" f #.'I driven by between-person differences in intensive longitudinal data.
https://doi.org/10.31219/0sf.io/7x8s
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